Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,484 Bytes
d1a539d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import re, io
import numpy as np
import random, torch
from PIL import Image
import torchvision.transforms as T
from collections import defaultdict
from scepter.modules.data.dataset.registry import DATASETS
from scepter.modules.data.dataset.base_dataset import BaseDataset
from scepter.modules.transform.io import pillow_convert
from scepter.modules.utils.directory import osp_path
from scepter.modules.utils.file_system import FS
from torchvision.transforms import InterpolationMode
def load_image(prefix, img_path, cvt_type=None):
if img_path is None or img_path == '':
return None
img_path = osp_path(prefix, img_path)
with FS.get_object(img_path) as image_bytes:
image = Image.open(io.BytesIO(image_bytes))
if cvt_type is not None:
image = pillow_convert(image, cvt_type)
return image
def transform_image(image, std = 0.5, mean = 0.5):
return (image.permute(2, 0, 1)/255. - mean)/std
def transform_mask(mask):
return mask.unsqueeze(0)/255.
def ensure_src_align_target_h_mode(src_image, size, image_id, interpolation=InterpolationMode.BILINEAR):
# padding mode
H, W = size
ret_image = []
for one_id in image_id:
edit_image = src_image[one_id]
_, eH, eW = edit_image.shape
scale = H/eH
tH, tW = H, int(eW * scale)
ret_image.append(T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image))
return ret_image
def ensure_src_align_target_padding_mode(src_image, size, image_id, size_h = [], interpolation=InterpolationMode.BILINEAR):
# padding mode
H, W = size
ret_data = []
ret_h = []
for idx, one_id in enumerate(image_id):
if len(size_h) < 1:
rH = random.randint(int(H / 3), int(H))
else:
rH = size_h[idx]
ret_h.append(rH)
edit_image = src_image[one_id]
_, eH, eW = edit_image.shape
scale = rH/eH
tH, tW = rH, int(eW * scale)
edit_image = T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image)
# padding
delta_w = 0
delta_h = H - tH
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
ret_data.append(T.Pad(padding, fill=0, padding_mode="constant")(edit_image).float())
return ret_data, ret_h
def ensure_limit_sequence(image, max_seq_len = 4096, d = 16, interpolation=InterpolationMode.BILINEAR):
# resize image for max_seq_len, while keep the aspect ratio
H, W = image.shape[-2:]
scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
rH = int(H * scale) // d * d # ensure divisible by self.d
rW = int(W * scale) // d * d
# print(f"{H} {W} -> {rH} {rW}")
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
return image
@DATASETS.register_class()
class ACEPlusDataset(BaseDataset):
para_dict = {
"DELIMITER": {
"value": "#;#",
"description": "The delimiter for records of data list."
},
"FIELDS": {
"value": ["data_type", "edit_image", "edit_mask", "ref_image", "target_image", "prompt"],
"description": "The fields for every record."
},
"PATH_PREFIX": {
"value": "",
"description": "The path prefix for every input image."
},
"EDIT_TYPE_LIST": {
"value": [],
"description": "The edit type list to be trained for data list."
},
"MAX_SEQ_LEN": {
"value": 4096,
"description": "The max sequence length for input image."
},
"D": {
"value": 16,
"description": "Patch size for resized image."
}
}
para_dict.update(BaseDataset.para_dict)
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
delimiter = cfg.get("DELIMITER", "#;#")
fields = cfg.get("FIELDS", [])
prefix = cfg.get("PATH_PREFIX", "")
edit_type_list = cfg.get("EDIT_TYPE_LIST", [])
self.modify_mode = cfg.get("MODIFY_MODE", True)
self.max_seq_len = cfg.get("MAX_SEQ_LEN", 4096)
self.repaiting_scale = cfg.get("REPAINTING_SCALE", 0.5)
self.d = cfg.get("D", 16)
prompt_file = cfg.DATA_LIST
self.items = self.read_data_list(delimiter,
fields,
prefix,
edit_type_list,
prompt_file)
random.shuffle(self.items)
use_num = int(cfg.get('USE_NUM', -1))
if use_num > 0:
self.items = self.items[:use_num]
def read_data_list(self, delimiter,
fields,
prefix,
edit_type_list,
prompt_file):
with FS.get_object(prompt_file) as local_data:
rows = local_data.decode('utf-8').strip().split('\n')
items = list()
dtype_level_num = {}
for i, row in enumerate(rows):
item = {"prefix": prefix}
for key, val in zip(fields, row.split(delimiter)):
item[key] = val
edit_type = item["data_type"]
if len(edit_type_list) > 0:
for re_pattern in edit_type_list:
if re.match(re_pattern, edit_type):
items.append(item)
if edit_type not in dtype_level_num:
dtype_level_num[edit_type] = 0
dtype_level_num[edit_type] += 1
break
else:
items.append(item)
if edit_type not in dtype_level_num:
dtype_level_num[edit_type] = 0
dtype_level_num[edit_type] += 1
for edit_type in dtype_level_num:
self.logger.info(f"{edit_type} has {dtype_level_num[edit_type]} samples.")
return items
def __len__(self):
return len(self.items)
def __getitem__(self, index):
item = self._get(index)
return self.pipeline(item)
def _get(self, index):
# normalize
sample_id = index%len(self)
index = self.items[index%len(self)]
prefix = index.get("prefix", "")
edit_image = index.get("edit_image", "")
edit_mask = index.get("edit_mask", "")
ref_image = index.get("ref_image", "")
target_image = index.get("target_image", "")
prompt = index.get("prompt", "")
edit_image = load_image(prefix, edit_image, cvt_type="RGB") if edit_image != "" else None
edit_mask = load_image(prefix, edit_mask, cvt_type="L") if edit_mask != "" else None
ref_image = load_image(prefix, ref_image, cvt_type="RGB") if ref_image != "" else None
target_image = load_image(prefix, target_image, cvt_type="RGB") if target_image != "" else None
assert target_image is not None
edit_id, ref_id, src_image_list, src_mask_list = [], [], [], []
# parse editing image
if edit_image is None:
edit_image = Image.new("RGB", target_image.size, (255, 255, 255))
edit_mask = Image.new("L", edit_image.size, 255)
elif edit_mask is None:
edit_mask = Image.new("L", edit_image.size, 255)
src_image_list.append(edit_image)
edit_id.append(0)
src_mask_list.append(edit_mask)
# parse reference image
if ref_image is not None:
src_image_list.append(ref_image)
ref_id.append(1)
src_mask_list.append(Image.new("L", ref_image.size, 0))
image = transform_image(torch.tensor(np.array(target_image).astype(np.float32)))
if edit_mask is not None:
image_mask = transform_mask(torch.tensor(np.array(edit_mask).astype(np.float32)))
else:
image_mask = Image.new("L", target_image.size, 255)
image_mask = transform_mask(torch.tensor(np.array(image_mask).astype(np.float32)))
src_image_list = [transform_image(torch.tensor(np.array(im).astype(np.float32))) for im in src_image_list]
src_mask_list = [transform_mask(torch.tensor(np.array(im).astype(np.float32))) for im in src_mask_list]
# decide the repainting scale for the editing task
if len(ref_id) > 0:
repainting_scale = 1.0
else:
repainting_scale = self.repaiting_scale
for e_i in edit_id:
src_image_list[e_i] = src_image_list[e_i] * (1 - repainting_scale * src_mask_list[e_i])
size = image.shape[1:]
ref_image_list, ret_h = ensure_src_align_target_padding_mode(src_image_list, size,
image_id=ref_id,
interpolation=InterpolationMode.NEAREST_EXACT)
ref_mask_list, ret_h = ensure_src_align_target_padding_mode(src_mask_list, size,
size_h=ret_h,
image_id=ref_id,
interpolation=InterpolationMode.NEAREST_EXACT)
edit_image_list = ensure_src_align_target_h_mode(src_image_list, size,
image_id=edit_id,
interpolation=InterpolationMode.NEAREST_EXACT)
edit_mask_list = ensure_src_align_target_h_mode(src_mask_list, size,
image_id=edit_id,
interpolation=InterpolationMode.NEAREST_EXACT)
src_image_list = [torch.cat(ref_image_list + edit_image_list, dim=-1)]
src_mask_list = [torch.cat(ref_mask_list + edit_mask_list, dim=-1)]
image = torch.cat(ref_image_list + [image], dim=-1)
image_mask = torch.cat(ref_mask_list + [image_mask], dim=-1)
# limit max sequence length
image = ensure_limit_sequence(image, max_seq_len = self.max_seq_len,
d = self.d, interpolation=InterpolationMode.BILINEAR)
image_mask = ensure_limit_sequence(image_mask, max_seq_len = self.max_seq_len,
d = self.d, interpolation=InterpolationMode.NEAREST_EXACT)
src_image_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len,
d = self.d, interpolation=InterpolationMode.BILINEAR) for i in src_image_list]
src_mask_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len,
d = self.d, interpolation=InterpolationMode.NEAREST_EXACT) for i in src_mask_list]
if self.modify_mode:
# To be modified regions according to mask
modify_image_list = [ii * im for ii, im in zip(src_image_list, src_mask_list)]
# To be edited regions according to mask
src_image_list = [ii * (1 - im) for ii, im in zip(src_image_list, src_mask_list)]
else:
src_image_list = src_image_list
modify_image_list = src_image_list
item = {
"src_image_list": src_image_list,
"src_mask_list": src_mask_list,
"modify_image_list": modify_image_list,
"image": image,
"image_mask": image_mask,
"edit_id": edit_id,
"ref_id": ref_id,
"prompt": prompt,
"edit_key": index["edit_key"] if "edit_key" in index else "",
"sample_id": sample_id
}
return item
@staticmethod
def collate_fn(batch):
collect = defaultdict(list)
for sample in batch:
for k, v in sample.items():
collect[k].append(v)
new_batch = dict()
for k, v in collect.items():
if all([i is None for i in v]):
new_batch[k] = None
else:
new_batch[k] = v
return new_batch
|