Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,233 Bytes
0d206f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import warnings
from contextlib import nullcontext
import torch
import torch.nn.functional as F
import torch.utils.dlpack
import transformers
from scepter.modules.model.embedder.base_embedder import BaseEmbedder
from scepter.modules.model.registry import EMBEDDERS
from scepter.modules.model.tokenizer.tokenizer_component import (
basic_clean, canonicalize, heavy_clean, whitespace_clean)
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
try:
from transformers import AutoTokenizer, T5EncoderModel
except Exception as e:
warnings.warn(
f'Import transformers error, please deal with this problem: {e}')
@EMBEDDERS.register_class()
class ACETextEmbedder(BaseEmbedder):
"""
Uses the OpenCLIP transformer encoder for text
"""
"""
Uses the OpenCLIP transformer encoder for text
"""
para_dict = {
'PRETRAINED_MODEL': {
'value':
'google/umt5-small',
'description':
'Pretrained Model for umt5, modelcard path or local path.'
},
'TOKENIZER_PATH': {
'value': 'google/umt5-small',
'description':
'Tokenizer Path for umt5, modelcard path or local path.'
},
'FREEZE': {
'value': True,
'description': ''
},
'USE_GRAD': {
'value': False,
'description': 'Compute grad or not.'
},
'CLEAN': {
'value':
'whitespace',
'description':
'Set the clean strtegy for tokenizer, used when TOKENIZER_PATH is not None.'
},
'LAYER': {
'value': 'last',
'description': ''
},
'LEGACY': {
'value':
True,
'description':
'Whether use legacy returnd feature or not ,default True.'
}
}
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
pretrained_path = cfg.get('PRETRAINED_MODEL', None)
self.t5_dtype = cfg.get('T5_DTYPE', 'float32')
assert pretrained_path
with FS.get_dir_to_local_dir(pretrained_path,
wait_finish=True) as local_path:
self.model = T5EncoderModel.from_pretrained(
local_path,
torch_dtype=getattr(
torch,
'float' if self.t5_dtype == 'float32' else self.t5_dtype))
tokenizer_path = cfg.get('TOKENIZER_PATH', None)
self.length = cfg.get('LENGTH', 77)
self.use_grad = cfg.get('USE_GRAD', False)
self.clean = cfg.get('CLEAN', 'whitespace')
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
if tokenizer_path:
self.tokenize_kargs = {'return_tensors': 'pt'}
with FS.get_dir_to_local_dir(tokenizer_path,
wait_finish=True) as local_path:
if self.added_identifier is not None and isinstance(
self.added_identifier, list):
self.tokenizer = AutoTokenizer.from_pretrained(local_path)
else:
self.tokenizer = AutoTokenizer.from_pretrained(local_path)
if self.length is not None:
self.tokenize_kargs.update({
'padding': 'max_length',
'truncation': True,
'max_length': self.length
})
self.eos_token = self.tokenizer(
self.tokenizer.eos_token)['input_ids'][0]
else:
self.tokenizer = None
self.tokenize_kargs = {}
self.use_grad = cfg.get('USE_GRAD', False)
self.clean = cfg.get('CLEAN', 'whitespace')
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
# encode && encode_text
def forward(self, tokens, return_mask=False, use_mask=True):
# tokenization
embedding_context = nullcontext if self.use_grad else torch.no_grad
with embedding_context():
if use_mask:
x = self.model(tokens.input_ids.to(we.device_id),
tokens.attention_mask.to(we.device_id))
else:
x = self.model(tokens.input_ids.to(we.device_id))
x = x.last_hidden_state
if return_mask:
return x.detach() + 0.0, tokens.attention_mask.to(we.device_id)
else:
return x.detach() + 0.0, None
def _clean(self, text):
if self.clean == 'whitespace':
text = whitespace_clean(basic_clean(text))
elif self.clean == 'lower':
text = whitespace_clean(basic_clean(text)).lower()
elif self.clean == 'canonicalize':
text = canonicalize(basic_clean(text))
elif self.clean == 'heavy':
text = heavy_clean(basic_clean(text))
return text
def encode(self, text, return_mask=False, use_mask=True):
if isinstance(text, str):
text = [text]
if self.clean:
text = [self._clean(u) for u in text]
assert self.tokenizer is not None
cont, mask = [], []
with torch.autocast(device_type='cuda',
enabled=self.t5_dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, self.t5_dtype)):
for tt in text:
tokens = self.tokenizer([tt], **self.tokenize_kargs)
one_cont, one_mask = self(tokens,
return_mask=return_mask,
use_mask=use_mask)
cont.append(one_cont)
mask.append(one_mask)
if return_mask:
return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
else:
return torch.cat(cont, dim=0)
def encode_list(self, text_list, return_mask=True):
cont_list = []
mask_list = []
for pp in text_list:
cont, cont_mask = self.encode(pp, return_mask=return_mask)
cont_list.append(cont)
mask_list.append(cont_mask)
if return_mask:
return cont_list, mask_list
else:
return cont_list
@staticmethod
def get_config_template():
return dict_to_yaml('MODELS',
__class__.__name__,
ACETextEmbedder.para_dict,
set_name=True)
@EMBEDDERS.register_class()
class ACEHFEmbedder(BaseEmbedder):
para_dict = {
"HF_MODEL_CLS": {
"value": None,
"description": "huggingface cls in transfomer"
},
"MODEL_PATH": {
"value": None,
"description": "model folder path"
},
"HF_TOKENIZER_CLS": {
"value": None,
"description": "huggingface cls in transfomer"
},
"TOKENIZER_PATH": {
"value": None,
"description": "tokenizer folder path"
},
"MAX_LENGTH": {
"value": 77,
"description": "max length of input"
},
"OUTPUT_KEY": {
"value": "last_hidden_state",
"description": "output key"
},
"D_TYPE": {
"value": "float",
"description": "dtype"
},
"BATCH_INFER": {
"value": False,
"description": "batch infer"
}
}
para_dict.update(BaseEmbedder.para_dict)
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
hf_model_cls = cfg.get('HF_MODEL_CLS', None)
model_path = cfg.get("MODEL_PATH", None)
hf_tokenizer_cls = cfg.get('HF_TOKENIZER_CLS', None)
tokenizer_path = cfg.get('TOKENIZER_PATH', None)
self.max_length = cfg.get('MAX_LENGTH', 77)
self.output_key = cfg.get("OUTPUT_KEY", "last_hidden_state")
self.d_type = cfg.get("D_TYPE", "float")
self.clean = cfg.get("CLEAN", "whitespace")
self.batch_infer = cfg.get("BATCH_INFER", False)
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
torch_dtype = getattr(torch, self.d_type)
assert hf_model_cls is not None and hf_tokenizer_cls is not None
assert model_path is not None and tokenizer_path is not None
with FS.get_dir_to_local_dir(tokenizer_path, wait_finish=True) as local_path:
self.tokenizer = getattr(transformers, hf_tokenizer_cls).from_pretrained(local_path,
max_length = self.max_length,
torch_dtype = torch_dtype,
additional_special_tokens=self.added_identifier)
with FS.get_dir_to_local_dir(model_path, wait_finish=True) as local_path:
self.hf_module = getattr(transformers, hf_model_cls).from_pretrained(local_path, torch_dtype = torch_dtype)
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str], return_mask = False):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
if return_mask:
return outputs[self.output_key], batch_encoding['attention_mask'].to(self.hf_module.device)
else:
return outputs[self.output_key], None
def encode(self, text, return_mask = False):
if isinstance(text, str):
text = [text]
if self.clean:
text = [self._clean(u) for u in text]
if not self.batch_infer:
cont, mask = [], []
for tt in text:
one_cont, one_mask = self([tt], return_mask=return_mask)
cont.append(one_cont)
mask.append(one_mask)
if return_mask:
return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
else:
return torch.cat(cont, dim=0)
else:
ret_data = self(text, return_mask = return_mask)
if return_mask:
return ret_data
else:
return ret_data[0]
def encode_list(self, text_list, return_mask=True):
cont_list = []
mask_list = []
for pp in text_list:
cont = self.encode(pp, return_mask=return_mask)
cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
mask_list.append(cont[1]) if return_mask else mask_list.append(None)
if return_mask:
return cont_list, mask_list
else:
return cont_list
def encode_list_of_list(self, text_list, return_mask=True):
cont_list = []
mask_list = []
for pp in text_list:
cont = self.encode_list(pp, return_mask=return_mask)
cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
mask_list.append(cont[1]) if return_mask else mask_list.append(None)
if return_mask:
return cont_list, mask_list
else:
return cont_list
def _clean(self, text):
if self.clean == 'whitespace':
text = whitespace_clean(basic_clean(text))
elif self.clean == 'lower':
text = whitespace_clean(basic_clean(text)).lower()
elif self.clean == 'canonicalize':
text = canonicalize(basic_clean(text))
return text
@staticmethod
def get_config_template():
return dict_to_yaml('EMBEDDER',
__class__.__name__,
ACEHFEmbedder.para_dict,
set_name=True)
@EMBEDDERS.register_class()
class T5ACEPlusClipFluxEmbedder(BaseEmbedder):
"""
Uses the OpenCLIP transformer encoder for text
"""
para_dict = {
'T5_MODEL': {},
'CLIP_MODEL': {}
}
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
self.t5_model = EMBEDDERS.build(cfg.T5_MODEL, logger=logger)
self.clip_model = EMBEDDERS.build(cfg.CLIP_MODEL, logger=logger)
def encode(self, text, return_mask = False):
t5_embeds = self.t5_model.encode(text, return_mask = return_mask)
clip_embeds = self.clip_model.encode(text, return_mask = return_mask)
# change embedding strategy here
return {
'context': t5_embeds,
'y': clip_embeds,
}
def encode_list(self, text, return_mask = False):
t5_embeds = self.t5_model.encode_list(text, return_mask = return_mask)
clip_embeds = self.clip_model.encode_list(text, return_mask = return_mask)
# change embedding strategy here
return {
'context': t5_embeds,
'y': clip_embeds,
}
def encode_list_of_list(self, text, return_mask = False):
t5_embeds = self.t5_model.encode_list_of_list(text, return_mask = return_mask)
clip_embeds = self.clip_model.encode_list_of_list(text, return_mask = return_mask)
# change embedding strategy here
return {
'context': t5_embeds,
'y': clip_embeds,
}
@staticmethod
def get_config_template():
return dict_to_yaml('EMBEDDER',
__class__.__name__,
T5ACEPlusClipFluxEmbedder.para_dict,
set_name=True) |