Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,792 Bytes
a0efccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import argparse
import glob
import io
import os
from PIL import Image
from scepter.modules.transform.io import pillow_convert
from scepter.modules.utils.config import Config
from scepter.modules.utils.file_system import FS
from examples.examples import all_examples
from inference.ace_plus_diffusers import ACEPlusDiffuserInference
inference_dict = {
"ACE_DIFFUSER_PLUS": ACEPlusDiffuserInference
}
fs_list = [
Config(cfg_dict={"NAME": "HuggingfaceFs", "TEMP_DIR": "./cache"}, load=False),
Config(cfg_dict={"NAME": "ModelscopeFs", "TEMP_DIR": "./cache"}, load=False),
Config(cfg_dict={"NAME": "HttpFs", "TEMP_DIR": "./cache"}, load=False),
Config(cfg_dict={"NAME": "LocalFs", "TEMP_DIR": "./cache"}, load=False),
]
for one_fs in fs_list:
FS.init_fs_client(one_fs)
def run_one_case(pipe,
input_image = None,
input_mask = None,
input_reference_image = None,
save_path = "examples/output/example.png",
instruction = "",
output_h = 1024,
output_w = 1024,
seed = -1,
sample_steps = None,
guide_scale = None,
repainting_scale = None,
model_path = None,
**kwargs):
if input_image is not None:
input_image = Image.open(io.BytesIO(FS.get_object(input_image)))
input_image = pillow_convert(input_image, "RGB")
if input_mask is not None:
input_mask = Image.open(io.BytesIO(FS.get_object(input_mask)))
input_mask = pillow_convert(input_mask, "L")
if input_reference_image is not None:
input_reference_image = Image.open(io.BytesIO(FS.get_object(input_reference_image)))
input_reference_image = pillow_convert(input_reference_image, "RGB")
image, seed = pipe(
reference_image=input_reference_image,
edit_image=input_image,
edit_mask=input_mask,
prompt=instruction,
output_height=output_h,
output_width=output_w,
sampler='flow_euler',
sample_steps=sample_steps or pipe.input.get("sample_steps", 28),
guide_scale=guide_scale or pipe.input.get("guide_scale", 50),
seed=seed,
repainting_scale=repainting_scale or pipe.input.get("repainting_scale", 1.0),
lora_path = model_path
)
with FS.put_to(save_path) as local_path:
image.save(local_path)
return local_path, seed
def run():
parser = argparse.ArgumentParser(description='Argparser for Scepter:\n')
parser.add_argument('--instruction',
dest='instruction',
help='The instruction for editing or generating!',
default="")
parser.add_argument('--output_h',
dest='output_h',
help='The height of output image for generation tasks!',
type=int,
default=1024)
parser.add_argument('--output_w',
dest='output_w',
help='The width of output image for generation tasks!',
type=int,
default=1024)
parser.add_argument('--input_reference_image',
dest='input_reference_image',
help='The input reference image!',
default=None
)
parser.add_argument('--input_image',
dest='input_image',
help='The input image!',
default=None
)
parser.add_argument('--input_mask',
dest='input_mask',
help='The input mask!',
default=None
)
parser.add_argument('--save_path',
dest='save_path',
help='The save path for output image!',
default='examples/output_images/output.png'
)
parser.add_argument('--seed',
dest='seed',
help='The seed for generation!',
type=int,
default=-1)
parser.add_argument('--step',
dest='step',
help='The sample step for generation!',
type=int,
default=None)
parser.add_argument('--guide_scale',
dest='guide_scale',
help='The guide scale for generation!',
type=int,
default=None)
parser.add_argument('--repainting_scale',
dest='repainting_scale',
help='The repainting scale for content filling generation!',
type=int,
default=None)
parser.add_argument('--task_type',
dest='task_type',
choices=['portrait', 'subject', 'local_editing'],
help="Choose the task type.",
default='')
parser.add_argument('--task_model',
dest='task_model',
help='The models list for different tasks!',
default="./models/model_zoo.yaml")
parser.add_argument('--infer_type',
dest='infer_type',
choices=['diffusers'],
default='diffusers',
help="Choose the inference scripts. 'native' refers to using the official implementation of ace++, "
"while 'diffusers' refers to using the adaptation for diffusers")
parser.add_argument('--cfg_folder',
dest='cfg_folder',
help='The inference config!',
default="./config")
cfg = Config(load=True, parser_ins=parser)
model_yamls = glob.glob(os.path.join(cfg.args.cfg_folder, '*.yaml'))
model_choices = dict()
for i in model_yamls:
model_cfg = Config(load=True, cfg_file=i)
model_name = model_cfg.NAME
model_choices[model_name] = model_cfg
if cfg.args.infer_type == "native":
infer_name = "ace_plus_native_infer"
elif cfg.args.infer_type == "diffusers":
infer_name = "ace_plus_diffuser_infer"
else:
raise ValueError("infer_type should be native or diffusers")
assert infer_name in model_choices
# choose different model
task_model_cfg = Config(load=True, cfg_file=cfg.args.task_model)
task_model_dict = {}
for task_name, task_model in task_model_cfg.MODEL.items():
task_model_dict[task_name] = task_model
# choose the inference scripts.
pipe_cfg = model_choices[infer_name]
infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE_PLUS")
pipe = inference_dict[infer_name]()
pipe.init_from_cfg(pipe_cfg)
if cfg.args.instruction == "" and cfg.args.input_image is None and cfg.args.input_reference_image is None:
params = {
"output_h": cfg.args.output_h,
"output_w": cfg.args.output_w,
"sample_steps": cfg.args.step,
"guide_scale": cfg.args.guide_scale
}
# run examples
for example in all_examples:
example["model_path"] = FS.get_from(task_model_dict[example["task_type"].upper()]["MODEL_PATH"])
example.update(params)
if example["edit_type"] == "repainting":
example["repainting_scale"] = 1.0
else:
example["repainting_scale"] = task_model_dict[example["task_type"].upper()].get("REPAINTING_SCALE", 1.0)
print(example)
local_path, seed = run_one_case(pipe, **example)
else:
assert cfg.args.task_type.upper() in task_model_cfg
params = {
"input_image": cfg.args.input_image,
"input_mask": cfg.args.input_mask,
"input_reference_image": cfg.args.input_reference_image,
"save_path": cfg.args.save_path,
"instruction": cfg.args.instruction,
"output_h": cfg.args.output_h,
"output_w": cfg.args.output_w,
"sample_steps": cfg.args.step,
"guide_scale": cfg.args.guide_scale,
"repainting_scale": cfg.args.repainting_scale,
"model_path": FS.get_from(task_model_dict[cfg.args.task_type.upper()]["MODEL_PATH"])
}
local_path, seed = run_one_case(pipe, **params)
print(local_path, seed)
if __name__ == '__main__':
run()
|