Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,960 Bytes
097bf68 b8d6d4a 097bf68 b8d6d4a 097bf68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
import math
from collections import OrderedDict
from functools import partial
import torch
from einops import rearrange, repeat
from scepter.modules.model.base_model import BaseModel
from scepter.modules.model.registry import BACKBONES
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
from torch import Tensor, nn
from torch.nn.utils.rnn import pad_sequence
from torch.utils.checkpoint import checkpoint_sequential
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
MLPEmbedder, SingleStreamBlock,
timestep_embedding)
@BACKBONES.register_class()
class Flux(BaseModel):
"""
Transformer backbone Diffusion model with RoPE.
"""
para_dict = {
"IN_CHANNELS": {
"value": 64,
"description": "model's input channels."
},
"OUT_CHANNELS": {
"value": 64,
"description": "model's output channels."
},
"HIDDEN_SIZE": {
"value": 1024,
"description": "model's hidden size."
},
"NUM_HEADS": {
"value": 16,
"description": "number of heads in the transformer."
},
"AXES_DIM": {
"value": [16, 56, 56],
"description": "dimensions of the axes of the positional encoding."
},
"THETA": {
"value": 10_000,
"description": "theta for positional encoding."
},
"VEC_IN_DIM": {
"value": 768,
"description": "dimension of the vector input."
},
"GUIDANCE_EMBED": {
"value": False,
"description": "whether to use guidance embedding."
},
"CONTEXT_IN_DIM": {
"value": 4096,
"description": "dimension of the context input."
},
"MLP_RATIO": {
"value": 4.0,
"description": "ratio of mlp hidden size to hidden size."
},
"QKV_BIAS": {
"value": True,
"description": "whether to use bias in qkv projection."
},
"DEPTH": {
"value": 19,
"description": "number of transformer blocks."
},
"DEPTH_SINGLE_BLOCKS": {
"value": 38,
"description": "number of transformer blocks in the single stream block."
},
"USE_GRAD_CHECKPOINT": {
"value": False,
"description": "whether to use gradient checkpointing."
},
"ATTN_BACKEND": {
"value": "pytorch",
"description": "backend for the transformer blocks, 'pytorch' or 'flash_attn'."
}
}
def __init__(
self,
cfg,
logger = None
):
super().__init__(cfg, logger=logger)
self.in_channels = cfg.IN_CHANNELS
self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels)
hidden_size = cfg.get("HIDDEN_SIZE", 1024)
num_heads = cfg.get("NUM_HEADS", 16)
axes_dim = cfg.AXES_DIM
theta = cfg.THETA
vec_in_dim = cfg.VEC_IN_DIM
self.guidance_embed = cfg.GUIDANCE_EMBED
context_in_dim = cfg.CONTEXT_IN_DIM
mlp_ratio = cfg.MLP_RATIO
qkv_bias = cfg.QKV_BIAS
depth = cfg.DEPTH
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False)
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch")
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None)
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None)
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None)
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
pe_dim = hidden_size // num_heads
if sum(axes_dim) != pe_dim:
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim= axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
backend=self.attn_backend
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def prepare_input(self, x, context, y, x_shape=None):
# x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360]
bs, c, h, w = x.shape
x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
x_id = torch.zeros(h // 2, w // 2, 3)
x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None]
x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :]
x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros(bs, context.shape[1], 3)
return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w
def unpack(self, x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height/2),
w=math.ceil(width/2),
ph=2,
pw=2,
)
def merge_diffuser_lora(self, ori_sd, lora_sd, scale = 1.0):
key_map = {
"single_blocks.{}.linear1.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight"],
["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight"],
["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight"],
["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight"]
], "num": 38},
"single_blocks.{}.modulation.lin.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight"],
], "num": 38},
"single_blocks.{}.linear2.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.{}.proj_out.lora_B.weight"],
], "num": 38},
"double_blocks.{}.txt_attn.qkv.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight"],
["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight"],
["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight"],
], "num": 19},
"double_blocks.{}.img_attn.qkv.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_q.lora_B.weight"],
["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_k.lora_B.weight"],
["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_v.lora_B.weight"],
], "num": 19},
"double_blocks.{}.img_attn.proj.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight"]
], "num": 19},
"double_blocks.{}.txt_attn.proj.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight"]
], "num": 19},
"double_blocks.{}.img_mlp.0.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight"]
], "num": 19},
"double_blocks.{}.img_mlp.2.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.{}.ff.net.2.lora_B.weight"]
], "num": 19},
"double_blocks.{}.txt_mlp.0.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight"]
], "num": 19},
"double_blocks.{}.txt_mlp.2.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight"]
], "num": 19},
"double_blocks.{}.img_mod.lin.weight": {"key_list": [
["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.{}.norm1.linear.lora_B.weight"]
], "num": 19},
"double_blocks.{}.txt_mod.lin.weight": {"key_list": [
["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight"]
], "num": 19}
}
for k, v in key_map.items():
key_list = v["key_list"]
block_num = v["num"]
for block_id in range(block_num):
current_weight_list = []
for k_list in key_list:
current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0),
lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0)
current_weight_list.append(current_weight)
current_weight = torch.cat(current_weight_list, dim=0)
ori_sd[k.format(block_id)] += scale*current_weight
return ori_sd
def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0):
have_lora_keys = {}
for k, v in lora_sd.items():
k = k[len("model."):] if k.startswith("model.") else k
ori_key = k.split("lora")[0] + "weight"
if ori_key not in ori_sd:
raise f"{ori_key} should in the original statedict"
if ori_key not in have_lora_keys:
have_lora_keys[ori_key] = {}
if "lora_A" in k:
have_lora_keys[ori_key]["lora_A"] = v
elif "lora_B" in k:
have_lora_keys[ori_key]["lora_B"] = v
else:
raise NotImplementedError
for key, v in have_lora_keys.items():
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
ori_sd[key] += scale * current_weight
return ori_sd
def load_pretrained_model(self, pretrained_model):
if next(self.parameters()).device.type == 'meta':
map_location = we.device_id
else:
map_location = "cpu"
if self.lora_model is not None:
map_location = we.device_id
if pretrained_model is not None:
with FS.get_from(pretrained_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
sd = load_safetensors(local_model, device=map_location)
else:
sd = torch.load(local_model, map_location=map_location)
if "state_dict" in sd:
sd = sd["state_dict"]
if "model" in sd:
sd = sd["model"]["model"]
if self.lora_model is not None:
with FS.get_from(self.lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=map_location)
else:
lora_sd = torch.load(local_model, map_location=map_location)
sd = self.merge_diffuser_lora(sd, lora_sd)
if self.swift_lora_model is not None:
with FS.get_from(self.swift_lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=map_location)
else:
lora_sd = torch.load(local_model, map_location=map_location)
sd = self.merge_swift_lora(sd, lora_sd)
adapter_ckpt = {}
if self.pretrain_adapter is not None:
with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
adapter_ckpt = load_safetensors(local_adapter, device=map_location)
else:
adapter_ckpt = torch.load(local_adapter, map_location=map_location)
sd.update(adapter_ckpt)
new_ckpt = OrderedDict()
for k, v in sd.items():
if k in ("img_in.weight"):
model_p = self.state_dict()[k]
if v.shape != model_p.shape:
model_p.zero_()
model_p[:, :64].copy_(v[:, :64])
new_ckpt[k] = torch.nn.parameter.Parameter(model_p)
else:
new_ckpt[k] = v
else:
new_ckpt[k] = v
missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True)
self.logger.info(
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys'
)
if len(missing) > 0:
self.logger.info(f'Missing Keys:\n {missing}')
if len(unexpected) > 0:
self.logger.info(f'\nUnexpected Keys:\n {unexpected}')
def forward(
self,
x: Tensor,
t: Tensor,
cond: dict = {},
guidance: Tensor | None = None,
gc_seg: int = 0
) -> Tensor:
x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"])
# running on sequences img
x = self.img_in(x)
vec = self.time_in(timestep_embedding(t, 256))
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, x_ids), dim=1)
pe = self.pe_embedder(ids)
kwargs = dict(
vec=vec,
pe=pe,
txt_length=txt.shape[1],
)
x = torch.cat((txt, x), 1)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.double_blocks],
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.double_blocks:
x = block(x, **kwargs)
kwargs = dict(
vec=vec,
pe=pe,
)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.single_blocks],
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.single_blocks:
x = block(x, **kwargs)
x = x[:, txt.shape[1] :, ...]
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
x = self.unpack(x, h, w)
return x
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
Flux.para_dict,
set_name=True)
@BACKBONES.register_class()
class FluxMR(Flux):
def prepare_input(self, x, cond):
if isinstance(cond['context'], list):
context, y = torch.cat(cond["context"], dim=0).to(x), torch.cat(cond["y"], dim=0).to(x)
else:
context, y = cond['context'].to(x), cond['y'].to(x)
batch_frames, batch_frames_ids = [], []
for ix, shape in zip(x, cond["x_shapes"]):
# unpack image from sequence
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
c, h, w = ix.shape
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
ix_id = torch.zeros(h // 2, w // 2, 3)
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
ix_id = rearrange(ix_id, "h w c -> (h w) c")
batch_frames.append([ix])
batch_frames_ids.append([ix_id])
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
proj_frames = []
for idx, one_frame in enumerate(frames):
one_frame = self.img_in(one_frame)
proj_frames.append(one_frame)
ix = torch.cat(proj_frames, dim=0)
if_id = torch.cat(frame_ids, dim=0)
x_list.append(ix)
x_id_list.append(if_id)
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
x_seq_length.append(ix.shape[0])
x = pad_sequence(tuple(x_list), batch_first=True)
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
txt = self.txt_in(context)
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor:
x_list = []
image_shapes = cond["x_shapes"]
for u, shape, seq_length in zip(x, image_shapes, x_seq_length):
height, width = shape
h, w = math.ceil(height / 2), math.ceil(width / 2)
u = rearrange(
u[seq_length-h*w:seq_length, ...],
"(h w) (c ph pw) -> (h ph w pw) c",
h=h,
w=w,
ph=2,
pw=2,
)
x_list.append(u)
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1)
return x
def forward(
self,
x: Tensor,
t: Tensor,
cond: dict = {},
guidance: Tensor | None = None,
gc_seg: int = 0,
**kwargs
) -> Tensor:
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond)
# running on sequences img
vec = self.time_in(timestep_embedding(t, 256))
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
ids = torch.cat((txt_ids, x_ids), dim=1)
pe = self.pe_embedder(ids)
mask_aside = torch.cat((mask_txt, mask_x), dim=1)
mask = mask_aside[:, None, :] * mask_aside[:, :, None]
kwargs = dict(
vec=vec,
pe=pe,
mask=mask,
txt_length = txt.shape[1],
)
x = torch.cat((txt, x), 1)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.double_blocks],
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.double_blocks:
x = block(x, **kwargs)
kwargs = dict(
vec=vec,
pe=pe,
mask=mask,
)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.single_blocks],
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.single_blocks:
x = block(x, **kwargs)
x = x[:, txt.shape[1]:, ...]
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
x = self.unpack(x, cond, seq_length_list)
return x
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
FluxEdit.para_dict,
set_name=True)
@BACKBONES.register_class()
class FluxEdit(FluxMR):
def prepare_input(self, x, cond, *args, **kwargs):
context, y = cond["context"], cond["y"]
batch_frames, batch_frames_ids, batch_shift = [], [], []
for ix, shape, is_align in zip(x, cond["x_shapes"], cond['align']):
# unpack image from sequence
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
c, h, w = ix.shape
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
ix_id = torch.zeros(h // 2, w // 2, 3)
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
batch_shift.append(h // 2) #if is_align < 1 else batch_shift.append(0)
ix_id = rearrange(ix_id, "h w c -> (h w) c")
batch_frames.append([ix])
batch_frames_ids.append([ix_id])
if 'edit_x' in cond:
for i, edit in enumerate(cond['edit_x']):
if edit is None:
continue
for ie in edit:
ie = ie.squeeze(0)
c, h, w = ie.shape
ie = rearrange(ie, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
ie_id = torch.zeros(h // 2, w // 2, 3)
ie_id[..., 1] = ie_id[..., 1] + torch.arange(batch_shift[i], h // 2 + batch_shift[i])[:, None]
ie_id[..., 2] = ie_id[..., 2] + torch.arange(w // 2)[None, :]
ie_id = rearrange(ie_id, "h w c -> (h w) c")
batch_frames[i].append(ie)
batch_frames_ids[i].append(ie_id)
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
proj_frames = []
for idx, one_frame in enumerate(frames):
one_frame = self.img_in(one_frame)
proj_frames.append(one_frame)
ix = torch.cat(proj_frames, dim=0)
if_id = torch.cat(frame_ids, dim=0)
x_list.append(ix)
x_id_list.append(if_id)
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
x_seq_length.append(ix.shape[0])
x = pad_sequence(tuple(x_list), batch_first=True)
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
txt_list, mask_txt_list, y_list = [], [], []
for sample_id, (ctx, yy) in enumerate(zip(context, y)):
ctx_batch = []
for frame_id, one_ctx in enumerate(ctx):
one_ctx = self.txt_in(one_ctx.to(x))
ctx_batch.append(one_ctx)
txt_list.append(torch.cat(ctx_batch, dim=0))
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool())
y_list.append(yy.mean(dim = 0, keepdim=True))
txt = pad_sequence(tuple(txt_list), batch_first=True)
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x)
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True)
y = torch.cat(y_list, dim=0)
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor:
x_list = []
image_shapes = cond["x_shapes"]
for u, shape, seq_length in zip(x, image_shapes, x_seq_length):
height, width = shape
h, w = math.ceil(height / 2), math.ceil(width / 2)
u = rearrange(
u[:h*w, ...],
"(h w) (c ph pw) -> (h ph w pw) c",
h=h,
w=w,
ph=2,
pw=2,
)
x_list.append(u)
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1)
return x
def forward(
self,
x: Tensor,
t: Tensor,
cond: dict = {},
guidance: Tensor | None = None,
gc_seg: int = 0,
text_position_embeddings = None
) -> Tensor:
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond, text_position_embeddings)
# running on sequences img
vec = self.time_in(timestep_embedding(t, 256))
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
ids = torch.cat((txt_ids, x_ids), dim=1)
pe = self.pe_embedder(ids)
mask_aside = torch.cat((mask_txt, mask_x), dim=1)
mask = mask_aside[:, None, :] * mask_aside[:, :, None]
kwargs = dict(
vec=vec,
pe=pe,
mask=mask,
txt_length = txt.shape[1],
)
x = torch.cat((txt, x), 1)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.double_blocks],
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.double_blocks:
x = block(x, **kwargs)
kwargs = dict(
vec=vec,
pe=pe,
mask=mask,
)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.single_blocks],
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.single_blocks:
x = block(x, **kwargs)
x = x[:, txt.shape[1]:, ...]
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
x = self.unpack(x, cond, seq_length_list)
return x
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
FluxEdit.para_dict,
set_name=True) |