File size: 12,484 Bytes
d1a539d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import re, io
import numpy as np
import random, torch
from PIL import Image
import torchvision.transforms as T
from collections import defaultdict
from scepter.modules.data.dataset.registry import DATASETS
from scepter.modules.data.dataset.base_dataset import BaseDataset
from scepter.modules.transform.io import pillow_convert
from scepter.modules.utils.directory import osp_path
from scepter.modules.utils.file_system import FS
from torchvision.transforms import InterpolationMode
def load_image(prefix, img_path, cvt_type=None):
    if img_path is None or img_path == '':
        return None
    img_path = osp_path(prefix, img_path)
    with FS.get_object(img_path) as image_bytes:
        image = Image.open(io.BytesIO(image_bytes))
        if cvt_type is not None:
            image = pillow_convert(image, cvt_type)
    return image
def transform_image(image, std = 0.5, mean = 0.5):
    return (image.permute(2, 0, 1)/255. - mean)/std
def transform_mask(mask):
    return mask.unsqueeze(0)/255.
def ensure_src_align_target_h_mode(src_image, size, image_id, interpolation=InterpolationMode.BILINEAR):
    # padding mode
    H, W = size
    ret_image = []
    for one_id in image_id:
        edit_image = src_image[one_id]
        _, eH, eW = edit_image.shape
        scale = H/eH
        tH, tW = H, int(eW * scale)
        ret_image.append(T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image))
    return ret_image

def ensure_src_align_target_padding_mode(src_image, size, image_id, size_h = [], interpolation=InterpolationMode.BILINEAR):
    # padding mode
    H, W = size

    ret_data = []
    ret_h = []
    for idx, one_id in enumerate(image_id):
        if len(size_h) < 1:
            rH = random.randint(int(H / 3), int(H))
        else:
            rH = size_h[idx]
        ret_h.append(rH)
        edit_image = src_image[one_id]
        _, eH, eW = edit_image.shape
        scale = rH/eH
        tH, tW = rH, int(eW * scale)
        edit_image = T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image)
        # padding
        delta_w = 0
        delta_h = H - tH
        padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
        ret_data.append(T.Pad(padding, fill=0, padding_mode="constant")(edit_image).float())
    return ret_data, ret_h

def ensure_limit_sequence(image, max_seq_len = 4096, d = 16, interpolation=InterpolationMode.BILINEAR):
    # resize image for max_seq_len, while keep the aspect ratio
    H, W = image.shape[-2:]
    scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
    rH = int(H * scale) // d * d  # ensure divisible by self.d
    rW = int(W * scale) // d * d
    # print(f"{H} {W} -> {rH} {rW}")
    image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
    return image

@DATASETS.register_class()
class ACEPlusDataset(BaseDataset):
    para_dict = {
        "DELIMITER": {
            "value": "#;#",
            "description": "The delimiter for records of data list."
        },
        "FIELDS": {
            "value": ["data_type", "edit_image", "edit_mask", "ref_image", "target_image", "prompt"],
            "description": "The fields for every record."
        },
        "PATH_PREFIX": {
            "value": "",
            "description": "The path prefix for every input image."
        },
        "EDIT_TYPE_LIST": {
            "value": [],
            "description": "The edit type list to be trained for data list."
        },
        "MAX_SEQ_LEN": {
            "value": 4096,
            "description": "The max sequence length for input image."
        },
        "D": {
            "value": 16,
            "description": "Patch size for resized image."
        }
    }
    para_dict.update(BaseDataset.para_dict)
    def __init__(self, cfg, logger=None):
        super().__init__(cfg, logger=logger)
        delimiter = cfg.get("DELIMITER", "#;#")
        fields = cfg.get("FIELDS", [])
        prefix = cfg.get("PATH_PREFIX", "")
        edit_type_list = cfg.get("EDIT_TYPE_LIST", [])
        self.modify_mode = cfg.get("MODIFY_MODE", True)
        self.max_seq_len = cfg.get("MAX_SEQ_LEN", 4096)
        self.repaiting_scale = cfg.get("REPAINTING_SCALE", 0.5)
        self.d = cfg.get("D", 16)
        prompt_file = cfg.DATA_LIST
        self.items = self.read_data_list(delimiter,
                                         fields,
                                         prefix,
                                         edit_type_list,
                                         prompt_file)
        random.shuffle(self.items)
        use_num = int(cfg.get('USE_NUM', -1))
        if use_num > 0:
            self.items = self.items[:use_num]
    def read_data_list(self, delimiter,
                             fields,
                             prefix,
                             edit_type_list,
                             prompt_file):
        with FS.get_object(prompt_file) as local_data:
            rows = local_data.decode('utf-8').strip().split('\n')
        items = list()
        dtype_level_num = {}
        for i, row in enumerate(rows):
            item = {"prefix": prefix}
            for key, val in zip(fields, row.split(delimiter)):
                item[key] = val
            edit_type = item["data_type"]
            if len(edit_type_list) > 0:
                for re_pattern in edit_type_list:
                    if re.match(re_pattern, edit_type):
                        items.append(item)
                        if edit_type not in dtype_level_num:
                            dtype_level_num[edit_type] = 0
                        dtype_level_num[edit_type] += 1
                        break
            else:
                items.append(item)
                if edit_type not in dtype_level_num:
                    dtype_level_num[edit_type] = 0
                dtype_level_num[edit_type] += 1
        for edit_type in dtype_level_num:
            self.logger.info(f"{edit_type} has {dtype_level_num[edit_type]} samples.")
        return items
    def __len__(self):
        return len(self.items)

    def __getitem__(self, index):
        item = self._get(index)
        return self.pipeline(item)

    def _get(self, index):
        # normalize
        sample_id =  index%len(self)
        index = self.items[index%len(self)]
        prefix = index.get("prefix", "")
        edit_image = index.get("edit_image", "")
        edit_mask = index.get("edit_mask", "")
        ref_image = index.get("ref_image", "")
        target_image = index.get("target_image", "")
        prompt = index.get("prompt", "")

        edit_image = load_image(prefix, edit_image, cvt_type="RGB") if edit_image != "" else None
        edit_mask = load_image(prefix, edit_mask, cvt_type="L") if edit_mask != "" else None
        ref_image = load_image(prefix, ref_image, cvt_type="RGB") if ref_image != "" else None
        target_image = load_image(prefix, target_image, cvt_type="RGB") if target_image != "" else None
        assert target_image is not None

        edit_id, ref_id, src_image_list, src_mask_list = [], [], [], []
        # parse editing image
        if edit_image is None:
            edit_image = Image.new("RGB", target_image.size, (255, 255, 255))
            edit_mask = Image.new("L", edit_image.size, 255)
        elif edit_mask is None:
            edit_mask = Image.new("L", edit_image.size, 255)
        src_image_list.append(edit_image)
        edit_id.append(0)
        src_mask_list.append(edit_mask)
        # parse reference image
        if ref_image is not None:
            src_image_list.append(ref_image)
            ref_id.append(1)
            src_mask_list.append(Image.new("L", ref_image.size, 0))

        image = transform_image(torch.tensor(np.array(target_image).astype(np.float32)))
        if edit_mask is not None:
            image_mask = transform_mask(torch.tensor(np.array(edit_mask).astype(np.float32)))
        else:
            image_mask = Image.new("L", target_image.size, 255)
            image_mask = transform_mask(torch.tensor(np.array(image_mask).astype(np.float32)))


        src_image_list = [transform_image(torch.tensor(np.array(im).astype(np.float32))) for im in src_image_list]
        src_mask_list = [transform_mask(torch.tensor(np.array(im).astype(np.float32))) for im in src_mask_list]

        # decide the repainting scale for the editing task
        if len(ref_id) > 0:
            repainting_scale = 1.0
        else:
            repainting_scale = self.repaiting_scale
        for e_i in edit_id:
            src_image_list[e_i] = src_image_list[e_i] * (1 - repainting_scale * src_mask_list[e_i])
        size = image.shape[1:]
        ref_image_list, ret_h = ensure_src_align_target_padding_mode(src_image_list, size,
                                                                                   image_id=ref_id,
                                                                                   interpolation=InterpolationMode.NEAREST_EXACT)
        ref_mask_list, ret_h = ensure_src_align_target_padding_mode(src_mask_list, size,
                                                                                  size_h=ret_h,
                                                                                  image_id=ref_id,
                                                                                  interpolation=InterpolationMode.NEAREST_EXACT)

        edit_image_list = ensure_src_align_target_h_mode(src_image_list, size,
                                                                       image_id=edit_id,
                                                                       interpolation=InterpolationMode.NEAREST_EXACT)
        edit_mask_list = ensure_src_align_target_h_mode(src_mask_list, size,
                                                                      image_id=edit_id,
                                                                      interpolation=InterpolationMode.NEAREST_EXACT)



        src_image_list = [torch.cat(ref_image_list + edit_image_list, dim=-1)]
        src_mask_list = [torch.cat(ref_mask_list + edit_mask_list, dim=-1)]
        image = torch.cat(ref_image_list + [image], dim=-1)
        image_mask = torch.cat(ref_mask_list + [image_mask], dim=-1)

        # limit max sequence length
        image = ensure_limit_sequence(image, max_seq_len = self.max_seq_len,
                                      d = self.d, interpolation=InterpolationMode.BILINEAR)
        image_mask = ensure_limit_sequence(image_mask, max_seq_len = self.max_seq_len,
                                      d = self.d, interpolation=InterpolationMode.NEAREST_EXACT)
        src_image_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len,
                                      d = self.d, interpolation=InterpolationMode.BILINEAR) for i in src_image_list]
        src_mask_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len,
                                      d = self.d, interpolation=InterpolationMode.NEAREST_EXACT) for i in src_mask_list]

        if self.modify_mode:
            # To be modified regions according to mask
            modify_image_list = [ii * im for ii, im in zip(src_image_list, src_mask_list)]
            # To be edited regions according to mask
            src_image_list = [ii * (1 - im) for ii, im in zip(src_image_list, src_mask_list)]
        else:
            src_image_list = src_image_list
            modify_image_list = src_image_list

        item = {
            "src_image_list": src_image_list,
            "src_mask_list": src_mask_list,
            "modify_image_list": modify_image_list,
            "image": image,
            "image_mask": image_mask,
            "edit_id": edit_id,
            "ref_id": ref_id,
            "prompt": prompt,
            "edit_key": index["edit_key"] if "edit_key" in index else "",
            "sample_id": sample_id
        }
        return item

    @staticmethod
    def collate_fn(batch):
        collect = defaultdict(list)
        for sample in batch:
            for k, v in sample.items():
                collect[k].append(v)
        new_batch = dict()
        for k, v in collect.items():
            if all([i is None for i in v]):
                new_batch[k] = None
            else:
                new_batch[k] = v
        return new_batch