Spaces:
Running
on
Zero
Running
on
Zero
Create layers.py
Browse files- model/layers.py +356 -0
model/layers.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import math
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from torch import Tensor, nn
|
6 |
+
import torch
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from torch import Tensor
|
9 |
+
from torch.nn.utils.rnn import pad_sequence
|
10 |
+
|
11 |
+
try:
|
12 |
+
from flash_attn import (
|
13 |
+
flash_attn_varlen_func
|
14 |
+
)
|
15 |
+
FLASHATTN_IS_AVAILABLE = True
|
16 |
+
except ImportError:
|
17 |
+
FLASHATTN_IS_AVAILABLE = False
|
18 |
+
flash_attn_varlen_func = None
|
19 |
+
|
20 |
+
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask: Tensor | None = None, backend = 'pytorch') -> Tensor:
|
21 |
+
q, k = apply_rope(q, k, pe)
|
22 |
+
if backend == 'pytorch':
|
23 |
+
if mask is not None and mask.dtype == torch.bool:
|
24 |
+
mask = torch.zeros_like(mask).to(q).masked_fill_(mask.logical_not(), -1e20)
|
25 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask)
|
26 |
+
# x = torch.nan_to_num(x, nan=0.0, posinf=1e10, neginf=-1e10)
|
27 |
+
x = rearrange(x, "B H L D -> B L (H D)")
|
28 |
+
elif backend == 'flash_attn':
|
29 |
+
# q: (B, H, L, D)
|
30 |
+
# k: (B, H, S, D) now L = S
|
31 |
+
# v: (B, H, S, D)
|
32 |
+
b, h, lq, d = q.shape
|
33 |
+
_, _, lk, _ = k.shape
|
34 |
+
q = rearrange(q, "B H L D -> B L H D")
|
35 |
+
k = rearrange(k, "B H S D -> B S H D")
|
36 |
+
v = rearrange(v, "B H S D -> B S H D")
|
37 |
+
if mask is None:
|
38 |
+
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(q.device, non_blocking=True)
|
39 |
+
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(k.device, non_blocking=True)
|
40 |
+
else:
|
41 |
+
q_lens = torch.sum(mask[:, 0, :, 0], dim=1).int()
|
42 |
+
k_lens = torch.sum(mask[:, 0, 0, :], dim=1).int()
|
43 |
+
q = torch.cat([q_v[:q_l] for q_v, q_l in zip(q, q_lens)])
|
44 |
+
k = torch.cat([k_v[:k_l] for k_v, k_l in zip(k, k_lens)])
|
45 |
+
v = torch.cat([v_v[:v_l] for v_v, v_l in zip(v, k_lens)])
|
46 |
+
cu_seqlens_q = torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32)
|
47 |
+
cu_seqlens_k = torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32)
|
48 |
+
max_seqlen_q = q_lens.max()
|
49 |
+
max_seqlen_k = k_lens.max()
|
50 |
+
|
51 |
+
x = flash_attn_varlen_func(
|
52 |
+
q,
|
53 |
+
k,
|
54 |
+
v,
|
55 |
+
cu_seqlens_q=cu_seqlens_q,
|
56 |
+
cu_seqlens_k=cu_seqlens_k,
|
57 |
+
max_seqlen_q=max_seqlen_q,
|
58 |
+
max_seqlen_k=max_seqlen_k
|
59 |
+
)
|
60 |
+
x_list = [x[cu_seqlens_q[i]:cu_seqlens_q[i+1]] for i in range(b)]
|
61 |
+
x = pad_sequence(tuple(x_list), batch_first=True)
|
62 |
+
x = rearrange(x, "B L H D -> B L (H D)")
|
63 |
+
else:
|
64 |
+
raise NotImplementedError
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
69 |
+
assert dim % 2 == 0
|
70 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
71 |
+
omega = 1.0 / (theta**scale)
|
72 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
73 |
+
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
74 |
+
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
75 |
+
return out.float()
|
76 |
+
|
77 |
+
|
78 |
+
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
79 |
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
80 |
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
81 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
82 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
83 |
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
84 |
+
|
85 |
+
class EmbedND(nn.Module):
|
86 |
+
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
87 |
+
super().__init__()
|
88 |
+
self.dim = dim
|
89 |
+
self.theta = theta
|
90 |
+
self.axes_dim = axes_dim
|
91 |
+
|
92 |
+
def forward(self, ids: Tensor) -> Tensor:
|
93 |
+
n_axes = ids.shape[-1]
|
94 |
+
emb = torch.cat(
|
95 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
96 |
+
dim=-3,
|
97 |
+
)
|
98 |
+
|
99 |
+
return emb.unsqueeze(1)
|
100 |
+
|
101 |
+
|
102 |
+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
103 |
+
"""
|
104 |
+
Create sinusoidal timestep embeddings.
|
105 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
106 |
+
These may be fractional.
|
107 |
+
:param dim: the dimension of the output.
|
108 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
109 |
+
:return: an (N, D) Tensor of positional embeddings.
|
110 |
+
"""
|
111 |
+
t = time_factor * t
|
112 |
+
half = dim // 2
|
113 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
114 |
+
t.device
|
115 |
+
)
|
116 |
+
|
117 |
+
args = t[:, None].float() * freqs[None]
|
118 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
119 |
+
if dim % 2:
|
120 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
121 |
+
if torch.is_floating_point(t):
|
122 |
+
embedding = embedding.to(t)
|
123 |
+
return embedding
|
124 |
+
|
125 |
+
|
126 |
+
class MLPEmbedder(nn.Module):
|
127 |
+
def __init__(self, in_dim: int, hidden_dim: int):
|
128 |
+
super().__init__()
|
129 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
130 |
+
self.silu = nn.SiLU()
|
131 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
132 |
+
|
133 |
+
def forward(self, x: Tensor) -> Tensor:
|
134 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
135 |
+
|
136 |
+
|
137 |
+
class RMSNorm(torch.nn.Module):
|
138 |
+
def __init__(self, dim: int):
|
139 |
+
super().__init__()
|
140 |
+
self.scale = nn.Parameter(torch.ones(dim))
|
141 |
+
|
142 |
+
def forward(self, x: Tensor):
|
143 |
+
x_dtype = x.dtype
|
144 |
+
x = x.float()
|
145 |
+
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
146 |
+
return (x * rrms).to(dtype=x_dtype) * self.scale
|
147 |
+
|
148 |
+
|
149 |
+
class QKNorm(torch.nn.Module):
|
150 |
+
def __init__(self, dim: int):
|
151 |
+
super().__init__()
|
152 |
+
self.query_norm = RMSNorm(dim)
|
153 |
+
self.key_norm = RMSNorm(dim)
|
154 |
+
|
155 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
156 |
+
q = self.query_norm(q)
|
157 |
+
k = self.key_norm(k)
|
158 |
+
return q.to(v), k.to(v)
|
159 |
+
|
160 |
+
|
161 |
+
class SelfAttention(nn.Module):
|
162 |
+
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
163 |
+
super().__init__()
|
164 |
+
self.num_heads = num_heads
|
165 |
+
head_dim = dim // num_heads
|
166 |
+
|
167 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
168 |
+
self.norm = QKNorm(head_dim)
|
169 |
+
self.proj = nn.Linear(dim, dim)
|
170 |
+
|
171 |
+
def forward(self, x: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor:
|
172 |
+
qkv = self.qkv(x)
|
173 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
174 |
+
q, k = self.norm(q, k, v)
|
175 |
+
x = attention(q, k, v, pe=pe, mask=mask)
|
176 |
+
x = self.proj(x)
|
177 |
+
return x
|
178 |
+
|
179 |
+
class CrossAttention(nn.Module):
|
180 |
+
def __init__(self, dim: int, context_dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
181 |
+
super().__init__()
|
182 |
+
self.num_heads = num_heads
|
183 |
+
head_dim = dim // num_heads
|
184 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
185 |
+
self.kv = nn.Linear(dim, context_dim * 2, bias=qkv_bias)
|
186 |
+
self.norm = QKNorm(head_dim)
|
187 |
+
self.proj = nn.Linear(dim, dim)
|
188 |
+
|
189 |
+
def forward(self, x: Tensor, context: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor:
|
190 |
+
qkv = self.qkv(x)
|
191 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
192 |
+
q, k = self.norm(q, k, v)
|
193 |
+
x = attention(q, k, v, pe=pe, mask=mask)
|
194 |
+
x = self.proj(x)
|
195 |
+
return x
|
196 |
+
|
197 |
+
|
198 |
+
@dataclass
|
199 |
+
class ModulationOut:
|
200 |
+
shift: Tensor
|
201 |
+
scale: Tensor
|
202 |
+
gate: Tensor
|
203 |
+
|
204 |
+
|
205 |
+
class Modulation(nn.Module):
|
206 |
+
def __init__(self, dim: int, double: bool):
|
207 |
+
super().__init__()
|
208 |
+
self.is_double = double
|
209 |
+
self.multiplier = 6 if double else 3
|
210 |
+
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
211 |
+
|
212 |
+
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
213 |
+
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
214 |
+
|
215 |
+
return (
|
216 |
+
ModulationOut(*out[:3]),
|
217 |
+
ModulationOut(*out[3:]) if self.is_double else None,
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
class DoubleStreamBlock(nn.Module):
|
222 |
+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, backend = 'pytorch'):
|
223 |
+
super().__init__()
|
224 |
+
|
225 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
226 |
+
self.num_heads = num_heads
|
227 |
+
self.hidden_size = hidden_size
|
228 |
+
self.img_mod = Modulation(hidden_size, double=True)
|
229 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
230 |
+
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
231 |
+
|
232 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
233 |
+
self.img_mlp = nn.Sequential(
|
234 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
235 |
+
nn.GELU(approximate="tanh"),
|
236 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
237 |
+
)
|
238 |
+
|
239 |
+
self.backend = backend
|
240 |
+
|
241 |
+
self.txt_mod = Modulation(hidden_size, double=True)
|
242 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
243 |
+
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
244 |
+
|
245 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
246 |
+
self.txt_mlp = nn.Sequential(
|
247 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
248 |
+
nn.GELU(approximate="tanh"),
|
249 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None, txt_length = None):
|
256 |
+
img_mod1, img_mod2 = self.img_mod(vec)
|
257 |
+
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
258 |
+
|
259 |
+
txt, img = x[:, :txt_length], x[:, txt_length:]
|
260 |
+
|
261 |
+
# prepare image for attention
|
262 |
+
img_modulated = self.img_norm1(img)
|
263 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
264 |
+
img_qkv = self.img_attn.qkv(img_modulated)
|
265 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
266 |
+
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
267 |
+
# prepare txt for attention
|
268 |
+
txt_modulated = self.txt_norm1(txt)
|
269 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
270 |
+
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
271 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
272 |
+
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
273 |
+
|
274 |
+
# run actual attention
|
275 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
276 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
277 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
278 |
+
if mask is not None:
|
279 |
+
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads)
|
280 |
+
attn = attention(q, k, v, pe=pe, mask = mask, backend = self.backend)
|
281 |
+
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
282 |
+
|
283 |
+
# calculate the img bloks
|
284 |
+
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
285 |
+
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
286 |
+
|
287 |
+
# calculate the txt bloks
|
288 |
+
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
289 |
+
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
290 |
+
x = torch.cat((txt, img), 1)
|
291 |
+
return x
|
292 |
+
|
293 |
+
|
294 |
+
class SingleStreamBlock(nn.Module):
|
295 |
+
"""
|
296 |
+
A DiT block with parallel linear layers as described in
|
297 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
298 |
+
"""
|
299 |
+
|
300 |
+
def __init__(
|
301 |
+
self,
|
302 |
+
hidden_size: int,
|
303 |
+
num_heads: int,
|
304 |
+
mlp_ratio: float = 4.0,
|
305 |
+
qk_scale: float | None = None,
|
306 |
+
backend='pytorch'
|
307 |
+
):
|
308 |
+
super().__init__()
|
309 |
+
self.hidden_dim = hidden_size
|
310 |
+
self.num_heads = num_heads
|
311 |
+
head_dim = hidden_size // num_heads
|
312 |
+
self.scale = qk_scale or head_dim**-0.5
|
313 |
+
|
314 |
+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
315 |
+
# qkv and mlp_in
|
316 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
317 |
+
# proj and mlp_out
|
318 |
+
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
319 |
+
|
320 |
+
self.norm = QKNorm(head_dim)
|
321 |
+
|
322 |
+
self.hidden_size = hidden_size
|
323 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
324 |
+
|
325 |
+
self.mlp_act = nn.GELU(approximate="tanh")
|
326 |
+
self.modulation = Modulation(hidden_size, double=False)
|
327 |
+
self.backend = backend
|
328 |
+
|
329 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None) -> Tensor:
|
330 |
+
mod, _ = self.modulation(vec)
|
331 |
+
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
332 |
+
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
333 |
+
|
334 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
335 |
+
q, k = self.norm(q, k, v)
|
336 |
+
if mask is not None:
|
337 |
+
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads)
|
338 |
+
# compute attention
|
339 |
+
attn = attention(q, k, v, pe=pe, mask = mask, backend=self.backend)
|
340 |
+
# compute activation in mlp stream, cat again and run second linear layer
|
341 |
+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
342 |
+
return x + mod.gate * output
|
343 |
+
|
344 |
+
|
345 |
+
class LastLayer(nn.Module):
|
346 |
+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
347 |
+
super().__init__()
|
348 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
349 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
350 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
351 |
+
|
352 |
+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
353 |
+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
354 |
+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
355 |
+
x = self.linear(x)
|
356 |
+
return x
|