chaojiemao commited on
Commit
63df902
·
1 Parent(s): 215519d

modify model

Browse files
Files changed (3) hide show
  1. ace_inference.py +0 -356
  2. example.py +0 -370
  3. utils.py +0 -95
ace_inference.py DELETED
@@ -1,356 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # Copyright (c) Alibaba, Inc. and its affiliates.
3
- import copy
4
- import math
5
- import random
6
-
7
- import numpy as np
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- import torchvision.transforms.functional as TF
12
- from PIL import Image
13
- import torchvision.transforms as T
14
- from scepter.modules.model.registry import DIFFUSIONS
15
- from scepter.modules.model.utils.basic_utils import check_list_of_list
16
- from scepter.modules.model.utils.basic_utils import \
17
- pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor
18
- from scepter.modules.model.utils.basic_utils import (
19
- to_device, unpack_tensor_into_imagelist)
20
- from scepter.modules.utils.distribute import we
21
- from scepter.modules.utils.logger import get_logger
22
-
23
- from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model
24
-
25
-
26
- def process_edit_image(images,
27
- masks,
28
- tasks,
29
- max_seq_len=1024,
30
- max_aspect_ratio=4,
31
- d=16,
32
- **kwargs):
33
-
34
- if not isinstance(images, list):
35
- images = [images]
36
- if not isinstance(masks, list):
37
- masks = [masks]
38
- if not isinstance(tasks, list):
39
- tasks = [tasks]
40
-
41
- img_tensors = []
42
- mask_tensors = []
43
- for img, mask, task in zip(images, masks, tasks):
44
- if mask is None or mask == '':
45
- mask = Image.new('L', img.size, 0)
46
- W, H = img.size
47
- if H / W > max_aspect_ratio:
48
- img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
49
- mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
50
- elif W / H > max_aspect_ratio:
51
- img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
52
- mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])
53
-
54
- H, W = img.height, img.width
55
- scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
56
- rH = int(H * scale) // d * d # ensure divisible by self.d
57
- rW = int(W * scale) // d * d
58
-
59
- img = TF.resize(img, (rH, rW),
60
- interpolation=TF.InterpolationMode.BICUBIC)
61
- mask = TF.resize(mask, (rH, rW),
62
- interpolation=TF.InterpolationMode.NEAREST_EXACT)
63
-
64
- mask = np.asarray(mask)
65
- mask = np.where(mask > 128, 1, 0)
66
- mask = mask.astype(
67
- np.float32) if np.any(mask) else np.ones_like(mask).astype(
68
- np.float32)
69
-
70
- img_tensor = TF.to_tensor(img).to(we.device_id)
71
- img_tensor = TF.normalize(img_tensor,
72
- mean=[0.5, 0.5, 0.5],
73
- std=[0.5, 0.5, 0.5])
74
- mask_tensor = TF.to_tensor(mask).to(we.device_id)
75
- if task in ['inpainting', 'Try On', 'Inpainting']:
76
- mask_indicator = mask_tensor.repeat(3, 1, 1)
77
- img_tensor[mask_indicator == 1] = -1.0
78
- img_tensors.append(img_tensor)
79
- mask_tensors.append(mask_tensor)
80
- return img_tensors, mask_tensors
81
-
82
- class TextEmbedding(nn.Module):
83
- def __init__(self, embedding_shape):
84
- super().__init__()
85
- self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
86
-
87
- class ACEFluxLCInference(DiffusionInference):
88
- def __init__(self, logger=None):
89
- if logger is None:
90
- logger = get_logger(name='scepter')
91
- self.logger = logger
92
- self.loaded_model = {}
93
- self.loaded_model_name = [
94
- 'diffusion_model', 'first_stage_model', 'cond_stage_model', 'ref_cond_stage_model'
95
- ]
96
-
97
- def init_from_cfg(self, cfg):
98
- self.name = cfg.NAME
99
- self.is_default = cfg.get('IS_DEFAULT', False)
100
- self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
101
- module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
102
- assert cfg.have('MODEL')
103
- self.size_factor = cfg.get('SIZE_FACTOR', 8)
104
- self.diffusion_model = self.infer_model(
105
- cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
106
- 'DIFFUSION_MODEL',
107
- None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
108
- self.first_stage_model = self.infer_model(
109
- cfg.MODEL.FIRST_STAGE_MODEL,
110
- module_paras.get(
111
- 'FIRST_STAGE_MODEL',
112
- None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
113
- self.cond_stage_model = self.infer_model(
114
- cfg.MODEL.COND_STAGE_MODEL,
115
- module_paras.get(
116
- 'COND_STAGE_MODEL',
117
- None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
118
-
119
- self.ref_cond_stage_model = self.infer_model(
120
- cfg.MODEL.REF_COND_STAGE_MODEL,
121
- module_paras.get(
122
- 'REF_COND_STAGE_MODEL',
123
- None)) if cfg.MODEL.have('REF_COND_STAGE_MODEL') else None
124
-
125
- self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
126
- logger=self.logger)
127
- self.interpolate_func = lambda x: (F.interpolate(
128
- x.unsqueeze(0),
129
- scale_factor=1 / self.size_factor,
130
- mode='nearest-exact') if x is not None else None)
131
-
132
- self.max_seq_length = cfg.get("MAX_SEQ_LENGTH", 4096)
133
- self.src_max_seq_length = cfg.get("SRC_MAX_SEQ_LENGTH", 1024)
134
- self.image_token = cfg.MODEL.get("IMAGE_TOKEN", "<img>")
135
-
136
- self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
137
- self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
138
- False)
139
- if self.use_text_pos_embeddings:
140
- self.text_position_embeddings = TextEmbedding(
141
- (10, 4096)).eval().requires_grad_(False).to(we.device_id)
142
- else:
143
- self.text_position_embeddings = None
144
-
145
- if not self.use_dynamic_model:
146
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
147
- self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
148
- if self.ref_cond_stage_model is not None: self.dynamic_load(self.ref_cond_stage_model, 'ref_cond_stage_model')
149
- self.dynamic_load(self.diffusion_model, 'diffusion_model')
150
-
151
- def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
152
- c, H, W = image.shape
153
- scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
154
- rH = int(H * scale) // 16 * 16 # ensure divisible by self.d
155
- rW = int(W * scale) // 16 * 16
156
- image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
157
- return image
158
-
159
-
160
- @torch.no_grad()
161
- def encode_first_stage(self, x, **kwargs):
162
- _, dtype = self.get_function_info(self.first_stage_model, 'encode')
163
- with torch.autocast('cuda',
164
- enabled=dtype in ('float16', 'bfloat16'),
165
- dtype=getattr(torch, dtype)):
166
- def run_one_image(u):
167
- zu = get_model(self.first_stage_model).encode(u)
168
- if isinstance(zu, (tuple, list)):
169
- zu = zu[0]
170
- return zu
171
-
172
- z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x]
173
- return z
174
-
175
-
176
- @torch.no_grad()
177
- def decode_first_stage(self, z):
178
- _, dtype = self.get_function_info(self.first_stage_model, 'decode')
179
- with torch.autocast('cuda',
180
- enabled=dtype in ('float16', 'bfloat16'),
181
- dtype=getattr(torch, dtype)):
182
- return [get_model(self.first_stage_model).decode(zu) for zu in z]
183
-
184
- def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
185
- noise = torch.randn(
186
- num_samples,
187
- 16,
188
- # allow for packing
189
- 2 * math.ceil(h / 16),
190
- 2 * math.ceil(w / 16),
191
- device=device,
192
- dtype=dtype,
193
- generator=torch.Generator(device=device).manual_seed(seed),
194
- )
195
- return noise
196
-
197
- # def preprocess_prompt(self, prompt):
198
- # prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
199
- # for pp_id, pp in enumerate(prompt_):
200
- # prompt_[pp_id] = [""] + pp
201
- # for p_id, p in enumerate(prompt_[pp_id]):
202
- # prompt_[pp_id][p_id] = self.image_token + self.text_indentifers[p_id] + " " + p
203
- # prompt_[pp_id] = [f";".join(prompt_[pp_id])]
204
- # return prompt_
205
-
206
- @torch.no_grad()
207
- def __call__(self,
208
- image=None,
209
- mask=None,
210
- prompt='',
211
- task=None,
212
- negative_prompt='',
213
- output_height=1024,
214
- output_width=1024,
215
- sampler='flow_euler',
216
- sample_steps=20,
217
- guide_scale=3.5,
218
- seed=-1,
219
- history_io=None,
220
- tar_index=0,
221
- align=0,
222
- **kwargs):
223
- input_image, input_mask = image, mask
224
- seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
225
- if input_image is not None:
226
- # assert isinstance(input_image, list) and isinstance(input_mask, list)
227
- if task is None:
228
- task = [''] * len(input_image)
229
- if not isinstance(prompt, list):
230
- prompt = [prompt] * len(input_image)
231
- prompt = [
232
- pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
233
- for i, pp in enumerate(prompt)
234
- ]
235
- edit_image, edit_image_mask = process_edit_image(
236
- input_image, input_mask, task, max_seq_len=self.src_max_seq_length)
237
- image, image_mask = self.upscale_resize(edit_image[tar_index]), self.upscale_resize(edit_image_mask[
238
- tar_index])
239
- # edit_image, edit_image_mask = [[self.upscale_resize(i) for i in edit_image]], [[self.upscale_resize(i) for i in edit_image_mask]]
240
- # image, image_mask = edit_image[tar_index], edit_image_mask[tar_index]
241
- edit_image, edit_image_mask = [edit_image], [edit_image_mask]
242
- else:
243
- edit_image = edit_image_mask = [[]]
244
- image = torch.zeros(
245
- size=[3, int(output_height),
246
- int(output_width)])
247
- image_mask = torch.ones(
248
- size=[1, int(output_height),
249
- int(output_width)])
250
- if not isinstance(prompt, list):
251
- prompt = [prompt]
252
-
253
- image, image_mask, prompt = [image], [image_mask], [prompt],
254
- align = [align for p in prompt] if isinstance(align, int) else align
255
-
256
- assert check_list_of_list(prompt) and check_list_of_list(
257
- edit_image) and check_list_of_list(edit_image_mask)
258
- # negative prompt is not used
259
- image = to_device(image)
260
- ctx = {}
261
- # Get Noise Shape
262
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
263
- x = self.encode_first_stage(image)
264
- self.dynamic_unload(self.first_stage_model,
265
- 'first_stage_model',
266
- skip_loaded=not self.use_dynamic_model)
267
-
268
- g = torch.Generator(device=we.device_id).manual_seed(seed)
269
-
270
- noise = [
271
- torch.randn((1, 16, i.shape[2], i.shape[3]), device=we.device_id, dtype=torch.bfloat16).normal_(generator=g)
272
- for i in x
273
- ]
274
- noise, x_shapes = pack_imagelist_into_tensor(noise)
275
- ctx['x_shapes'] = x_shapes
276
- ctx['align'] = align
277
-
278
- image_mask = to_device(image_mask, strict=False)
279
- cond_mask = [self.interpolate_func(i) for i in image_mask
280
- ] if image_mask is not None else [None] * len(image)
281
- ctx['x_mask'] = cond_mask
282
- # Encode Prompt
283
- instruction_prompt = [[pp[-1]] if "{image}" in pp[-1] else ["{image} " + pp[-1]] for pp in prompt]
284
- self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
285
- function_name, dtype = self.get_function_info(self.cond_stage_model)
286
- cont = getattr(get_model(self.cond_stage_model), function_name)(instruction_prompt)
287
- cont["context"] = [ct[-1] for ct in cont["context"]]
288
- cont["y"] = [ct[-1] for ct in cont["y"]]
289
- self.dynamic_unload(self.cond_stage_model,
290
- 'cond_stage_model',
291
- skip_loaded=not self.use_dynamic_model)
292
- ctx.update(cont)
293
-
294
- # Encode Edit Images
295
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
296
- edit_image = [to_device(i, strict=False) for i in edit_image]
297
- edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
298
- e_img, e_mask = [], []
299
- for u, m in zip(edit_image, edit_image_mask):
300
- if u is None:
301
- continue
302
- if m is None:
303
- m = [None] * len(u)
304
- e_img.append(self.encode_first_stage(u, **kwargs))
305
- e_mask.append([self.interpolate_func(i) for i in m])
306
- self.dynamic_unload(self.first_stage_model,
307
- 'first_stage_model',
308
- skip_loaded=not self.use_dynamic_model)
309
- ctx['edit_x'] = e_img
310
- ctx['edit_mask'] = e_mask
311
- # Encode Ref Images
312
- if guide_scale is not None:
313
- guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device, dtype=noise.dtype)
314
- else:
315
- guide_scale = None
316
-
317
- # Diffusion Process
318
- self.dynamic_load(self.diffusion_model, 'diffusion_model')
319
- function_name, dtype = self.get_function_info(self.diffusion_model)
320
- with torch.autocast('cuda',
321
- enabled=dtype in ('float16', 'bfloat16'),
322
- dtype=getattr(torch, dtype)):
323
- latent = self.diffusion.sample(
324
- noise=noise,
325
- sampler=sampler,
326
- model=get_model(self.diffusion_model),
327
- model_kwargs={
328
- "cond": ctx, "guidance": guide_scale, "gc_seg": -1
329
- },
330
- steps=sample_steps,
331
- show_progress=True,
332
- guide_scale=guide_scale,
333
- return_intermediate=None,
334
- reverse_scale=-1,
335
- **kwargs).float()
336
- if self.use_dynamic_model: self.dynamic_unload(self.diffusion_model,
337
- 'diffusion_model',
338
- skip_loaded=not self.use_dynamic_model)
339
-
340
- # Decode to Pixel Space
341
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
342
- samples = unpack_tensor_into_imagelist(latent, x_shapes)
343
- x_samples = self.decode_first_stage(samples)
344
- self.dynamic_unload(self.first_stage_model,
345
- 'first_stage_model',
346
- skip_loaded=not self.use_dynamic_model)
347
- x_samples = [x.squeeze(0) for x in x_samples]
348
-
349
- imgs = [
350
- torch.clamp((x_i.float() + 1.0) / 2.0,
351
- min=0.0,
352
- max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
353
- for x_i in x_samples
354
- ]
355
- imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
356
- return imgs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
example.py DELETED
@@ -1,370 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # Copyright (c) Alibaba, Inc. and its affiliates.
3
- import os
4
- from PIL import Image
5
- from scepter.modules.utils.file_system import FS
6
-
7
-
8
- def download_image(image, local_path=None):
9
- if not FS.exists(local_path):
10
- local_path = FS.get_from(image, local_path=local_path)
11
- if local_path.split(".")[-1] in ['jpg', 'jpeg']:
12
- im = Image.open(local_path).convert("RGB")
13
- im.save(local_path, format='JPEG')
14
- return local_path
15
-
16
-
17
- def get_examples(cache_dir):
18
- print('Downloading Examples ...')
19
- examples = [
20
- [
21
- 'Facial Editing',
22
- download_image(
23
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/e33edc106953.png?raw=true',
24
- os.path.join(cache_dir, 'examples/e33edc106953.jpg')), None,
25
- None, '{image} let the man smile', 6666
26
- ],
27
- [
28
- 'Facial Editing',
29
- download_image(
30
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/5d2bcc91a3e9.png?raw=true',
31
- os.path.join(cache_dir, 'examples/5d2bcc91a3e9.jpg')), None,
32
- None, 'let the man in {image} wear sunglasses', 9999
33
- ],
34
- [
35
- 'Facial Editing',
36
- download_image(
37
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/3a52eac708bd.png?raw=true',
38
- os.path.join(cache_dir, 'examples/3a52eac708bd.jpg')), None,
39
- None, '{image} red hair', 9999
40
- ],
41
- [
42
- 'Facial Editing',
43
- download_image(
44
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/3f4dc464a0ea.png?raw=true',
45
- os.path.join(cache_dir, 'examples/3f4dc464a0ea.jpg')), None,
46
- None, '{image} let the man serious', 99999
47
- ],
48
- [
49
- 'Controllable Generation',
50
- download_image(
51
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/131ca90fd2a9.png?raw=true',
52
- os.path.join(cache_dir,
53
- 'examples/131ca90fd2a9.jpg')), None, None,
54
- '"A person sits contemplatively on the ground, surrounded by falling autumn leaves. Dressed in a green sweater and dark blue pants, they rest their chin on their hand, exuding a relaxed demeanor. Their stylish checkered slip-on shoes add a touch of flair, while a black purse lies in their lap. The backdrop of muted brown enhances the warm, cozy atmosphere of the scene." , generate the image that corresponds to the given scribble {image}.',
55
- 613725
56
- ],
57
- [
58
- 'Render Text',
59
- download_image(
60
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/33e9f27c2c48.png?raw=true',
61
- os.path.join(cache_dir, 'examples/33e9f27c2c48.jpg')),
62
- download_image(
63
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/33e9f27c2c48_mask.png?raw=true',
64
- os.path.join(cache_dir,
65
- 'examples/33e9f27c2c48_mask.jpg')), None,
66
- 'Put the text "C A T" at the position marked by mask in the {image}',
67
- 6666
68
- ],
69
- [
70
- 'Style Transfer',
71
- download_image(
72
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/9e73e7eeef55.png?raw=true',
73
- os.path.join(cache_dir, 'examples/9e73e7eeef55.jpg')), None,
74
- download_image(
75
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/2e02975293d6.png?raw=true',
76
- os.path.join(cache_dir, 'examples/2e02975293d6.jpg')),
77
- 'edit {image} based on the style of {image1} ', 99999
78
- ],
79
- [
80
- 'Outpainting',
81
- download_image(
82
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/f2b22c08be3f.png?raw=true',
83
- os.path.join(cache_dir, 'examples/f2b22c08be3f.jpg')),
84
- download_image(
85
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/f2b22c08be3f_mask.png?raw=true',
86
- os.path.join(cache_dir,
87
- 'examples/f2b22c08be3f_mask.jpg')), None,
88
- 'Could the {image} be widened within the space designated by mask, while retaining the original?',
89
- 6666
90
- ],
91
- [
92
- 'Image Segmentation',
93
- download_image(
94
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/db3ebaa81899.png?raw=true',
95
- os.path.join(cache_dir, 'examples/db3ebaa81899.jpg')), None,
96
- None, '{image} Segmentation', 6666
97
- ],
98
- [
99
- 'Depth Estimation',
100
- download_image(
101
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/f1927c4692ba.png?raw=true',
102
- os.path.join(cache_dir, 'examples/f1927c4692ba.jpg')), None,
103
- None, '{image} Depth Estimation', 6666
104
- ],
105
- [
106
- 'Pose Estimation',
107
- download_image(
108
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/014e5bf3b4d1.png?raw=true',
109
- os.path.join(cache_dir, 'examples/014e5bf3b4d1.jpg')), None,
110
- None, '{image} distinguish the poses of the figures', 999999
111
- ],
112
- [
113
- 'Scribble Extraction',
114
- download_image(
115
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/5f59a202f8ac.png?raw=true',
116
- os.path.join(cache_dir, 'examples/5f59a202f8ac.jpg')), None,
117
- None, 'Generate a scribble of {image}, please.', 6666
118
- ],
119
- [
120
- 'Mosaic',
121
- download_image(
122
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/3a2f52361eea.png?raw=true',
123
- os.path.join(cache_dir, 'examples/3a2f52361eea.jpg')), None,
124
- None, 'Adapt {image} into a mosaic representation.', 6666
125
- ],
126
- [
127
- 'Edge map Extraction',
128
- download_image(
129
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/b9d1e519d6e5.png?raw=true',
130
- os.path.join(cache_dir, 'examples/b9d1e519d6e5.jpg')), None,
131
- None, 'Get the edge-enhanced result for {image}.', 6666
132
- ],
133
- [
134
- 'Grayscale',
135
- download_image(
136
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/c4ebbe2ba29b.png?raw=true',
137
- os.path.join(cache_dir, 'examples/c4ebbe2ba29b.jpg')), None,
138
- None, 'transform {image} into a black and white one', 6666
139
- ],
140
- [
141
- 'Contour Extraction',
142
- download_image(
143
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/19652d0f6c4b.png?raw=true',
144
- os.path.join(cache_dir,
145
- 'examples/19652d0f6c4b.jpg')), None, None,
146
- 'Would you be able to make a contour picture from {image} for me?',
147
- 6666
148
- ],
149
- [
150
- 'Controllable Generation',
151
- download_image(
152
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/249cda2844b7.png?raw=true',
153
- os.path.join(cache_dir,
154
- 'examples/249cda2844b7.jpg')), None, None,
155
- 'Following the segmentation outcome in mask of {image}, develop a real-life image using the explanatory note in "a mighty cat lying on the bed”.',
156
- 6666
157
- ],
158
- [
159
- 'Controllable Generation',
160
- download_image(
161
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/411f6c4b8e6c.png?raw=true',
162
- os.path.join(cache_dir,
163
- 'examples/411f6c4b8e6c.jpg')), None, None,
164
- 'use the depth map {image} and the text caption "a cut white cat" to create a corresponding graphic image',
165
- 999999
166
- ],
167
- [
168
- 'Controllable Generation',
169
- download_image(
170
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/a35c96ed137a.png?raw=true',
171
- os.path.join(cache_dir,
172
- 'examples/a35c96ed137a.jpg')), None, None,
173
- 'help translate this posture schema {image} into a colored image based on the context I provided "A beautiful woman Climbing the climbing wall, wearing a harness and climbing gear, skillfully maneuvering up the wall with her back to the camera, with a safety rope."',
174
- 3599999
175
- ],
176
- [
177
- 'Controllable Generation',
178
- download_image(
179
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/dcb2fc86f1ce.png?raw=true',
180
- os.path.join(cache_dir,
181
- 'examples/dcb2fc86f1ce.jpg')), None, None,
182
- 'Transform and generate an image using mosaic {image} and "Monarch butterflies gracefully perch on vibrant purple flowers, showcasing their striking orange and black wings in a lush garden setting." description',
183
- 6666
184
- ],
185
- [
186
- 'Controllable Generation',
187
- download_image(
188
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/4cd4ee494962.png?raw=true',
189
- os.path.join(cache_dir,
190
- 'examples/4cd4ee494962.jpg')), None, None,
191
- 'make this {image} colorful as per the "beautiful sunflowers"',
192
- 6666
193
- ],
194
- [
195
- 'Controllable Generation',
196
- download_image(
197
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/a47e3a9cd166.png?raw=true',
198
- os.path.join(cache_dir,
199
- 'examples/a47e3a9cd166.jpg')), None, None,
200
- 'Take the edge conscious {image} and the written guideline "A whimsical animated character is depicted holding a delectable cake adorned with blue and white frosting and a drizzle of chocolate. The character wears a yellow headband with a bow, matching a cozy yellow sweater. Her dark hair is styled in a braid, tied with a yellow ribbon. With a golden fork in hand, she stands ready to enjoy a slice, exuding an air of joyful anticipation. The scene is creatively rendered with a charming and playful aesthetic." and produce a realistic image.',
201
- 613725
202
- ],
203
- [
204
- 'Controllable Generation',
205
- download_image(
206
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/d890ed8a3ac2.png?raw=true',
207
- os.path.join(cache_dir,
208
- 'examples/d890ed8a3ac2.jpg')), None, None,
209
- 'creating a vivid image based on {image} and description "This image features a delicious rectangular tart with a flaky, golden-brown crust. The tart is topped with evenly sliced tomatoes, layered over a creamy cheese filling. Aromatic herbs are sprinkled on top, adding a touch of green and enhancing the visual appeal. The background includes a soft, textured fabric and scattered white flowers, creating an elegant and inviting presentation. Bright red tomatoes in the upper right corner hint at the fresh ingredients used in the dish."',
210
- 6666
211
- ],
212
- [
213
- 'Image Denoising',
214
- download_image(
215
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/0844a686a179.png?raw=true',
216
- os.path.join(cache_dir,
217
- 'examples/0844a686a179.jpg')), None, None,
218
- 'Eliminate noise interference in {image} and maximize the crispness to obtain superior high-definition quality',
219
- 6666
220
- ],
221
- [
222
- 'Inpainting',
223
- download_image(
224
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/fa91b6b7e59b.png?raw=true',
225
- os.path.join(cache_dir, 'examples/fa91b6b7e59b.jpg')),
226
- download_image(
227
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/fa91b6b7e59b_mask.png?raw=true',
228
- os.path.join(cache_dir,
229
- 'examples/fa91b6b7e59b_mask.jpg')), None,
230
- 'Ensure to overhaul the parts of the {image} indicated by the mask.',
231
- 6666
232
- ],
233
- [
234
- 'Inpainting',
235
- download_image(
236
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/632899695b26.png?raw=true',
237
- os.path.join(cache_dir, 'examples/632899695b26.jpg')),
238
- download_image(
239
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/632899695b26_mask.png?raw=true',
240
- os.path.join(cache_dir,
241
- 'examples/632899695b26_mask.jpg')), None,
242
- 'Refashion the mask portion of {image} in accordance with "A yellow egg with a smiling face painted on it"',
243
- 6666
244
- ],
245
- [
246
- 'General Editing',
247
- download_image(
248
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/354d17594afe.png?raw=true',
249
- os.path.join(cache_dir,
250
- 'examples/354d17594afe.jpg')), None, None,
251
- '{image} change the dog\'s posture to walking in the water, and change the background to green plants and a pond.',
252
- 6666
253
- ],
254
- [
255
- 'General Editing',
256
- download_image(
257
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/38946455752b.png?raw=true',
258
- os.path.join(cache_dir,
259
- 'examples/38946455752b.jpg')), None, None,
260
- '{image} change the color of the dress from white to red and the model\'s hair color red brown to blonde.Other parts remain unchanged',
261
- 6669
262
- ],
263
- [
264
- 'Facial Editing',
265
- download_image(
266
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/3ba5202f0cd8.png?raw=true',
267
- os.path.join(cache_dir,
268
- 'examples/3ba5202f0cd8.jpg')), None, None,
269
- 'Keep the same facial feature in @3ba5202f0cd8, change the woman\'s clothing from a Blue denim jacket to a white turtleneck sweater and adjust her posture so that she is supporting her chin with both hands. Other aspects, such as background, hairstyle, facial expression, etc, remain unchanged.',
270
- 99999
271
- ],
272
- [
273
- 'Facial Editing',
274
- download_image(
275
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/369365b94725.png?raw=true',
276
- os.path.join(cache_dir, 'examples/369365b94725.jpg')), None,
277
- None, '{image} Make her looking at the camera', 6666
278
- ],
279
- [
280
- 'Facial Editing',
281
- download_image(
282
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/92751f2e4a0e.png?raw=true',
283
- os.path.join(cache_dir, 'examples/92751f2e4a0e.jpg')), None,
284
- None, '{image} Remove the smile from his face', 9899999
285
- ],
286
- [
287
- 'Remove Text',
288
- download_image(
289
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/8530a6711b2e.png?raw=true',
290
- os.path.join(cache_dir, 'examples/8530a6711b2e.jpg')), None,
291
- None, 'Aim to remove any textual element in {image}', 6666
292
- ],
293
- [
294
- 'Remove Text',
295
- download_image(
296
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/c4d7fb28f8f6.png?raw=true',
297
- os.path.join(cache_dir, 'examples/c4d7fb28f8f6.jpg')),
298
- download_image(
299
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/c4d7fb28f8f6_mask.png?raw=true',
300
- os.path.join(cache_dir,
301
- 'examples/c4d7fb28f8f6_mask.jpg')), None,
302
- 'Rub out any text found in the mask sector of the {image}.', 6666
303
- ],
304
- [
305
- 'Remove Object',
306
- download_image(
307
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/e2f318fa5e5b.png?raw=true',
308
- os.path.join(cache_dir,
309
- 'examples/e2f318fa5e5b.jpg')), None, None,
310
- 'Remove the unicorn in this {image}, ensuring a smooth edit.',
311
- 99999
312
- ],
313
- [
314
- 'Remove Object',
315
- download_image(
316
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/1ae96d8aca00.png?raw=true',
317
- os.path.join(cache_dir, 'examples/1ae96d8aca00.jpg')),
318
- download_image(
319
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/1ae96d8aca00_mask.png?raw=true',
320
- os.path.join(cache_dir, 'examples/1ae96d8aca00_mask.jpg')),
321
- None, 'Discard the contents of the mask area from {image}.', 99999
322
- ],
323
- [
324
- 'Add Object',
325
- download_image(
326
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/80289f48e511.png?raw=true',
327
- os.path.join(cache_dir, 'examples/80289f48e511.jpg')),
328
- download_image(
329
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/80289f48e511_mask.png?raw=true',
330
- os.path.join(cache_dir,
331
- 'examples/80289f48e511_mask.jpg')), None,
332
- 'add a Hot Air Balloon into the {image}, per the mask', 613725
333
- ],
334
- [
335
- 'Style Transfer',
336
- download_image(
337
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/d725cb2009e8.png?raw=true',
338
- os.path.join(cache_dir, 'examples/d725cb2009e8.jpg')), None,
339
- None, 'Change the style of {image} to colored pencil style', 99999
340
- ],
341
- [
342
- 'Style Transfer',
343
- download_image(
344
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/e0f48b3fd010.png?raw=true',
345
- os.path.join(cache_dir, 'examples/e0f48b3fd010.jpg')), None,
346
- None, 'make {image} to Walt Disney Animation style', 99999
347
- ],
348
- [
349
- 'Try On',
350
- download_image(
351
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/ee4ca60b8c96.png?raw=true',
352
- os.path.join(cache_dir, 'examples/ee4ca60b8c96.jpg')),
353
- download_image(
354
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/ee4ca60b8c96_mask.png?raw=true',
355
- os.path.join(cache_dir, 'examples/ee4ca60b8c96_mask.jpg')),
356
- download_image(
357
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/ebe825bbfe3c.png?raw=true',
358
- os.path.join(cache_dir, 'examples/ebe825bbfe3c.jpg')),
359
- 'Change the cloth in {image} to the one in {image1}', 99999
360
- ],
361
- [
362
- 'Workflow',
363
- download_image(
364
- 'https://github.com/ali-vilab/ace-page/blob/main/assets/examples/cb85353c004b.png?raw=true',
365
- os.path.join(cache_dir, 'examples/cb85353c004b.jpg')), None,
366
- None, '<workflow> ice cream {image}', 99999
367
- ],
368
- ]
369
- print('Finish. Start building UI ...')
370
- return examples
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils.py DELETED
@@ -1,95 +0,0 @@
1
- #copyright (c) Alibaba, Inc. and its affiliates.
2
- import torch
3
- import torchvision.transforms as T
4
- from PIL import Image
5
- from torchvision.transforms.functional import InterpolationMode
6
-
7
- IMAGENET_MEAN = (0.485, 0.456, 0.406)
8
- IMAGENET_STD = (0.229, 0.224, 0.225)
9
-
10
-
11
- def build_transform(input_size):
12
- MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
13
- transform = T.Compose([
14
- T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
15
- T.Resize((input_size, input_size),
16
- interpolation=InterpolationMode.BICUBIC),
17
- T.ToTensor(),
18
- T.Normalize(mean=MEAN, std=STD)
19
- ])
20
- return transform
21
-
22
-
23
- def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
24
- image_size):
25
- best_ratio_diff = float('inf')
26
- best_ratio = (1, 1)
27
- area = width * height
28
- for ratio in target_ratios:
29
- target_aspect_ratio = ratio[0] / ratio[1]
30
- ratio_diff = abs(aspect_ratio - target_aspect_ratio)
31
- if ratio_diff < best_ratio_diff:
32
- best_ratio_diff = ratio_diff
33
- best_ratio = ratio
34
- elif ratio_diff == best_ratio_diff:
35
- if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
36
- best_ratio = ratio
37
- return best_ratio
38
-
39
-
40
- def dynamic_preprocess(image,
41
- min_num=1,
42
- max_num=12,
43
- image_size=448,
44
- use_thumbnail=False):
45
- orig_width, orig_height = image.size
46
- aspect_ratio = orig_width / orig_height
47
-
48
- # calculate the existing image aspect ratio
49
- target_ratios = set((i, j) for n in range(min_num, max_num + 1)
50
- for i in range(1, n + 1) for j in range(1, n + 1)
51
- if i * j <= max_num and i * j >= min_num)
52
- target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
53
-
54
- # find the closest aspect ratio to the target
55
- target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
56
- target_ratios, orig_width,
57
- orig_height, image_size)
58
-
59
- # calculate the target width and height
60
- target_width = image_size * target_aspect_ratio[0]
61
- target_height = image_size * target_aspect_ratio[1]
62
- blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
63
-
64
- # resize the image
65
- resized_img = image.resize((target_width, target_height))
66
- processed_images = []
67
- for i in range(blocks):
68
- box = ((i % (target_width // image_size)) * image_size,
69
- (i // (target_width // image_size)) * image_size,
70
- ((i % (target_width // image_size)) + 1) * image_size,
71
- ((i // (target_width // image_size)) + 1) * image_size)
72
- # split the image
73
- split_img = resized_img.crop(box)
74
- processed_images.append(split_img)
75
- assert len(processed_images) == blocks
76
- if use_thumbnail and len(processed_images) != 1:
77
- thumbnail_img = image.resize((image_size, image_size))
78
- processed_images.append(thumbnail_img)
79
- return processed_images
80
-
81
-
82
- def load_image(image_file, input_size=448, max_num=12):
83
- if isinstance(image_file, str):
84
- image = Image.open(image_file).convert('RGB')
85
- else:
86
- image = image_file
87
- transform = build_transform(input_size=input_size)
88
- images = dynamic_preprocess(image,
89
- image_size=input_size,
90
- use_thumbnail=True,
91
- max_num=max_num)
92
- pixel_values = [transform(image) for image in images]
93
- pixel_values = torch.stack(pixel_values)
94
- return pixel_values
95
-