Spaces:
Running
on
Zero
Running
on
Zero
Update model/flux.py
Browse files- model/flux.py +378 -1
model/flux.py
CHANGED
@@ -1,7 +1,10 @@
|
|
|
|
|
|
1 |
import math
|
2 |
from collections import OrderedDict
|
3 |
from functools import partial
|
4 |
-
|
|
|
5 |
import torch
|
6 |
from einops import rearrange, repeat
|
7 |
from scepter.modules.model.base_model import BaseModel
|
@@ -12,11 +15,385 @@ from scepter.modules.utils.file_system import FS
|
|
12 |
from torch import Tensor, nn
|
13 |
from torch.nn.utils.rnn import pad_sequence
|
14 |
from torch.utils.checkpoint import checkpoint_sequential
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
17 |
MLPEmbedder, SingleStreamBlock,
|
18 |
timestep_embedding)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
@BACKBONES.register_class()
|
21 |
class Flux(BaseModel):
|
22 |
"""
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
import math
|
4 |
from collections import OrderedDict
|
5 |
from functools import partial
|
6 |
+
import warnings
|
7 |
+
from contextlib import nullcontext
|
8 |
import torch
|
9 |
from einops import rearrange, repeat
|
10 |
from scepter.modules.model.base_model import BaseModel
|
|
|
15 |
from torch import Tensor, nn
|
16 |
from torch.nn.utils.rnn import pad_sequence
|
17 |
from torch.utils.checkpoint import checkpoint_sequential
|
18 |
+
import torch.nn.functional as F
|
19 |
+
import torch.utils.dlpack
|
20 |
+
import transformers
|
21 |
+
from scepter.modules.model.embedder.base_embedder import BaseEmbedder
|
22 |
+
from scepter.modules.model.registry import EMBEDDERS
|
23 |
+
from scepter.modules.model.tokenizer.tokenizer_component import (
|
24 |
+
basic_clean, canonicalize, heavy_clean, whitespace_clean)
|
25 |
+
try:
|
26 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
27 |
+
except Exception as e:
|
28 |
+
warnings.warn(
|
29 |
+
f'Import transformers error, please deal with this problem: {e}')
|
30 |
|
31 |
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
32 |
MLPEmbedder, SingleStreamBlock,
|
33 |
timestep_embedding)
|
34 |
|
35 |
+
|
36 |
+
|
37 |
+
@EMBEDDERS.register_class()
|
38 |
+
class ACETextEmbedder(BaseEmbedder):
|
39 |
+
"""
|
40 |
+
Uses the OpenCLIP transformer encoder for text
|
41 |
+
"""
|
42 |
+
"""
|
43 |
+
Uses the OpenCLIP transformer encoder for text
|
44 |
+
"""
|
45 |
+
para_dict = {
|
46 |
+
'PRETRAINED_MODEL': {
|
47 |
+
'value':
|
48 |
+
'google/umt5-small',
|
49 |
+
'description':
|
50 |
+
'Pretrained Model for umt5, modelcard path or local path.'
|
51 |
+
},
|
52 |
+
'TOKENIZER_PATH': {
|
53 |
+
'value': 'google/umt5-small',
|
54 |
+
'description':
|
55 |
+
'Tokenizer Path for umt5, modelcard path or local path.'
|
56 |
+
},
|
57 |
+
'FREEZE': {
|
58 |
+
'value': True,
|
59 |
+
'description': ''
|
60 |
+
},
|
61 |
+
'USE_GRAD': {
|
62 |
+
'value': False,
|
63 |
+
'description': 'Compute grad or not.'
|
64 |
+
},
|
65 |
+
'CLEAN': {
|
66 |
+
'value':
|
67 |
+
'whitespace',
|
68 |
+
'description':
|
69 |
+
'Set the clean strtegy for tokenizer, used when TOKENIZER_PATH is not None.'
|
70 |
+
},
|
71 |
+
'LAYER': {
|
72 |
+
'value': 'last',
|
73 |
+
'description': ''
|
74 |
+
},
|
75 |
+
'LEGACY': {
|
76 |
+
'value':
|
77 |
+
True,
|
78 |
+
'description':
|
79 |
+
'Whether use legacy returnd feature or not ,default True.'
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
def __init__(self, cfg, logger=None):
|
84 |
+
super().__init__(cfg, logger=logger)
|
85 |
+
pretrained_path = cfg.get('PRETRAINED_MODEL', None)
|
86 |
+
self.t5_dtype = cfg.get('T5_DTYPE', 'float32')
|
87 |
+
assert pretrained_path
|
88 |
+
with FS.get_dir_to_local_dir(pretrained_path,
|
89 |
+
wait_finish=True) as local_path:
|
90 |
+
self.model = T5EncoderModel.from_pretrained(
|
91 |
+
local_path,
|
92 |
+
torch_dtype=getattr(
|
93 |
+
torch,
|
94 |
+
'float' if self.t5_dtype == 'float32' else self.t5_dtype))
|
95 |
+
tokenizer_path = cfg.get('TOKENIZER_PATH', None)
|
96 |
+
self.length = cfg.get('LENGTH', 77)
|
97 |
+
|
98 |
+
self.use_grad = cfg.get('USE_GRAD', False)
|
99 |
+
self.clean = cfg.get('CLEAN', 'whitespace')
|
100 |
+
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
|
101 |
+
if tokenizer_path:
|
102 |
+
self.tokenize_kargs = {'return_tensors': 'pt'}
|
103 |
+
with FS.get_dir_to_local_dir(tokenizer_path,
|
104 |
+
wait_finish=True) as local_path:
|
105 |
+
if self.added_identifier is not None and isinstance(
|
106 |
+
self.added_identifier, list):
|
107 |
+
self.tokenizer = AutoTokenizer.from_pretrained(local_path)
|
108 |
+
else:
|
109 |
+
self.tokenizer = AutoTokenizer.from_pretrained(local_path)
|
110 |
+
if self.length is not None:
|
111 |
+
self.tokenize_kargs.update({
|
112 |
+
'padding': 'max_length',
|
113 |
+
'truncation': True,
|
114 |
+
'max_length': self.length
|
115 |
+
})
|
116 |
+
self.eos_token = self.tokenizer(
|
117 |
+
self.tokenizer.eos_token)['input_ids'][0]
|
118 |
+
else:
|
119 |
+
self.tokenizer = None
|
120 |
+
self.tokenize_kargs = {}
|
121 |
+
|
122 |
+
self.use_grad = cfg.get('USE_GRAD', False)
|
123 |
+
self.clean = cfg.get('CLEAN', 'whitespace')
|
124 |
+
|
125 |
+
def freeze(self):
|
126 |
+
self.model = self.model.eval()
|
127 |
+
for param in self.parameters():
|
128 |
+
param.requires_grad = False
|
129 |
+
|
130 |
+
# encode && encode_text
|
131 |
+
def forward(self, tokens, return_mask=False, use_mask=True):
|
132 |
+
# tokenization
|
133 |
+
embedding_context = nullcontext if self.use_grad else torch.no_grad
|
134 |
+
with embedding_context():
|
135 |
+
if use_mask:
|
136 |
+
x = self.model(tokens.input_ids.to(we.device_id),
|
137 |
+
tokens.attention_mask.to(we.device_id))
|
138 |
+
else:
|
139 |
+
x = self.model(tokens.input_ids.to(we.device_id))
|
140 |
+
x = x.last_hidden_state
|
141 |
+
|
142 |
+
if return_mask:
|
143 |
+
return x.detach() + 0.0, tokens.attention_mask.to(we.device_id)
|
144 |
+
else:
|
145 |
+
return x.detach() + 0.0, None
|
146 |
+
|
147 |
+
def _clean(self, text):
|
148 |
+
if self.clean == 'whitespace':
|
149 |
+
text = whitespace_clean(basic_clean(text))
|
150 |
+
elif self.clean == 'lower':
|
151 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
152 |
+
elif self.clean == 'canonicalize':
|
153 |
+
text = canonicalize(basic_clean(text))
|
154 |
+
elif self.clean == 'heavy':
|
155 |
+
text = heavy_clean(basic_clean(text))
|
156 |
+
return text
|
157 |
+
|
158 |
+
def encode(self, text, return_mask=False, use_mask=True):
|
159 |
+
if isinstance(text, str):
|
160 |
+
text = [text]
|
161 |
+
if self.clean:
|
162 |
+
text = [self._clean(u) for u in text]
|
163 |
+
assert self.tokenizer is not None
|
164 |
+
cont, mask = [], []
|
165 |
+
with torch.autocast(device_type='cuda',
|
166 |
+
enabled=self.t5_dtype in ('float16', 'bfloat16'),
|
167 |
+
dtype=getattr(torch, self.t5_dtype)):
|
168 |
+
for tt in text:
|
169 |
+
tokens = self.tokenizer([tt], **self.tokenize_kargs)
|
170 |
+
one_cont, one_mask = self(tokens,
|
171 |
+
return_mask=return_mask,
|
172 |
+
use_mask=use_mask)
|
173 |
+
cont.append(one_cont)
|
174 |
+
mask.append(one_mask)
|
175 |
+
if return_mask:
|
176 |
+
return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
|
177 |
+
else:
|
178 |
+
return torch.cat(cont, dim=0)
|
179 |
+
|
180 |
+
def encode_list(self, text_list, return_mask=True):
|
181 |
+
cont_list = []
|
182 |
+
mask_list = []
|
183 |
+
for pp in text_list:
|
184 |
+
cont, cont_mask = self.encode(pp, return_mask=return_mask)
|
185 |
+
cont_list.append(cont)
|
186 |
+
mask_list.append(cont_mask)
|
187 |
+
if return_mask:
|
188 |
+
return cont_list, mask_list
|
189 |
+
else:
|
190 |
+
return cont_list
|
191 |
+
|
192 |
+
@staticmethod
|
193 |
+
def get_config_template():
|
194 |
+
return dict_to_yaml('MODELS',
|
195 |
+
__class__.__name__,
|
196 |
+
ACETextEmbedder.para_dict,
|
197 |
+
set_name=True)
|
198 |
+
|
199 |
+
@EMBEDDERS.register_class()
|
200 |
+
class ACEHFEmbedder(BaseEmbedder):
|
201 |
+
para_dict = {
|
202 |
+
"HF_MODEL_CLS": {
|
203 |
+
"value": None,
|
204 |
+
"description": "huggingface cls in transfomer"
|
205 |
+
},
|
206 |
+
"MODEL_PATH": {
|
207 |
+
"value": None,
|
208 |
+
"description": "model folder path"
|
209 |
+
},
|
210 |
+
"HF_TOKENIZER_CLS": {
|
211 |
+
"value": None,
|
212 |
+
"description": "huggingface cls in transfomer"
|
213 |
+
},
|
214 |
+
|
215 |
+
"TOKENIZER_PATH": {
|
216 |
+
"value": None,
|
217 |
+
"description": "tokenizer folder path"
|
218 |
+
},
|
219 |
+
"MAX_LENGTH": {
|
220 |
+
"value": 77,
|
221 |
+
"description": "max length of input"
|
222 |
+
},
|
223 |
+
"OUTPUT_KEY": {
|
224 |
+
"value": "last_hidden_state",
|
225 |
+
"description": "output key"
|
226 |
+
},
|
227 |
+
"D_TYPE": {
|
228 |
+
"value": "float",
|
229 |
+
"description": "dtype"
|
230 |
+
},
|
231 |
+
"BATCH_INFER": {
|
232 |
+
"value": False,
|
233 |
+
"description": "batch infer"
|
234 |
+
}
|
235 |
+
}
|
236 |
+
para_dict.update(BaseEmbedder.para_dict)
|
237 |
+
def __init__(self, cfg, logger=None):
|
238 |
+
super().__init__(cfg, logger=logger)
|
239 |
+
hf_model_cls = cfg.get('HF_MODEL_CLS', None)
|
240 |
+
model_path = cfg.get("MODEL_PATH", None)
|
241 |
+
hf_tokenizer_cls = cfg.get('HF_TOKENIZER_CLS', None)
|
242 |
+
tokenizer_path = cfg.get('TOKENIZER_PATH', None)
|
243 |
+
self.max_length = cfg.get('MAX_LENGTH', 77)
|
244 |
+
self.output_key = cfg.get("OUTPUT_KEY", "last_hidden_state")
|
245 |
+
self.d_type = cfg.get("D_TYPE", "float")
|
246 |
+
self.clean = cfg.get("CLEAN", "whitespace")
|
247 |
+
self.batch_infer = cfg.get("BATCH_INFER", False)
|
248 |
+
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
|
249 |
+
torch_dtype = getattr(torch, self.d_type)
|
250 |
+
|
251 |
+
assert hf_model_cls is not None and hf_tokenizer_cls is not None
|
252 |
+
assert model_path is not None and tokenizer_path is not None
|
253 |
+
with FS.get_dir_to_local_dir(tokenizer_path, wait_finish=True) as local_path:
|
254 |
+
self.tokenizer = getattr(transformers, hf_tokenizer_cls).from_pretrained(local_path,
|
255 |
+
max_length = self.max_length,
|
256 |
+
torch_dtype = torch_dtype,
|
257 |
+
additional_special_tokens=self.added_identifier)
|
258 |
+
|
259 |
+
with FS.get_dir_to_local_dir(model_path, wait_finish=True) as local_path:
|
260 |
+
self.hf_module = getattr(transformers, hf_model_cls).from_pretrained(local_path, torch_dtype = torch_dtype)
|
261 |
+
|
262 |
+
|
263 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
264 |
+
|
265 |
+
def forward(self, text: list[str], return_mask = False):
|
266 |
+
batch_encoding = self.tokenizer(
|
267 |
+
text,
|
268 |
+
truncation=True,
|
269 |
+
max_length=self.max_length,
|
270 |
+
return_length=False,
|
271 |
+
return_overflowing_tokens=False,
|
272 |
+
padding="max_length",
|
273 |
+
return_tensors="pt",
|
274 |
+
)
|
275 |
+
|
276 |
+
outputs = self.hf_module(
|
277 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
278 |
+
attention_mask=None,
|
279 |
+
output_hidden_states=False,
|
280 |
+
)
|
281 |
+
if return_mask:
|
282 |
+
return outputs[self.output_key], batch_encoding['attention_mask'].to(self.hf_module.device)
|
283 |
+
else:
|
284 |
+
return outputs[self.output_key], None
|
285 |
+
|
286 |
+
def encode(self, text, return_mask = False):
|
287 |
+
if isinstance(text, str):
|
288 |
+
text = [text]
|
289 |
+
if self.clean:
|
290 |
+
text = [self._clean(u) for u in text]
|
291 |
+
if not self.batch_infer:
|
292 |
+
cont, mask = [], []
|
293 |
+
for tt in text:
|
294 |
+
one_cont, one_mask = self([tt], return_mask=return_mask)
|
295 |
+
cont.append(one_cont)
|
296 |
+
mask.append(one_mask)
|
297 |
+
if return_mask:
|
298 |
+
return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
|
299 |
+
else:
|
300 |
+
return torch.cat(cont, dim=0)
|
301 |
+
else:
|
302 |
+
ret_data = self(text, return_mask = return_mask)
|
303 |
+
if return_mask:
|
304 |
+
return ret_data
|
305 |
+
else:
|
306 |
+
return ret_data[0]
|
307 |
+
|
308 |
+
def encode_list(self, text_list, return_mask=True):
|
309 |
+
cont_list = []
|
310 |
+
mask_list = []
|
311 |
+
for pp in text_list:
|
312 |
+
cont = self.encode(pp, return_mask=return_mask)
|
313 |
+
cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
|
314 |
+
mask_list.append(cont[1]) if return_mask else mask_list.append(None)
|
315 |
+
if return_mask:
|
316 |
+
return cont_list, mask_list
|
317 |
+
else:
|
318 |
+
return cont_list
|
319 |
+
|
320 |
+
def encode_list_of_list(self, text_list, return_mask=True):
|
321 |
+
cont_list = []
|
322 |
+
mask_list = []
|
323 |
+
for pp in text_list:
|
324 |
+
cont = self.encode_list(pp, return_mask=return_mask)
|
325 |
+
cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
|
326 |
+
mask_list.append(cont[1]) if return_mask else mask_list.append(None)
|
327 |
+
if return_mask:
|
328 |
+
return cont_list, mask_list
|
329 |
+
else:
|
330 |
+
return cont_list
|
331 |
+
|
332 |
+
def _clean(self, text):
|
333 |
+
if self.clean == 'whitespace':
|
334 |
+
text = whitespace_clean(basic_clean(text))
|
335 |
+
elif self.clean == 'lower':
|
336 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
337 |
+
elif self.clean == 'canonicalize':
|
338 |
+
text = canonicalize(basic_clean(text))
|
339 |
+
return text
|
340 |
+
@staticmethod
|
341 |
+
def get_config_template():
|
342 |
+
return dict_to_yaml('EMBEDDER',
|
343 |
+
__class__.__name__,
|
344 |
+
ACEHFEmbedder.para_dict,
|
345 |
+
set_name=True)
|
346 |
+
|
347 |
+
@EMBEDDERS.register_class()
|
348 |
+
class T5ACEPlusClipFluxEmbedder(BaseEmbedder):
|
349 |
+
"""
|
350 |
+
Uses the OpenCLIP transformer encoder for text
|
351 |
+
"""
|
352 |
+
para_dict = {
|
353 |
+
'T5_MODEL': {},
|
354 |
+
'CLIP_MODEL': {}
|
355 |
+
}
|
356 |
+
|
357 |
+
def __init__(self, cfg, logger=None):
|
358 |
+
super().__init__(cfg, logger=logger)
|
359 |
+
self.t5_model = EMBEDDERS.build(cfg.T5_MODEL, logger=logger)
|
360 |
+
self.clip_model = EMBEDDERS.build(cfg.CLIP_MODEL, logger=logger)
|
361 |
+
|
362 |
+
def encode(self, text, return_mask = False):
|
363 |
+
t5_embeds = self.t5_model.encode(text, return_mask = return_mask)
|
364 |
+
clip_embeds = self.clip_model.encode(text, return_mask = return_mask)
|
365 |
+
# change embedding strategy here
|
366 |
+
return {
|
367 |
+
'context': t5_embeds,
|
368 |
+
'y': clip_embeds,
|
369 |
+
}
|
370 |
+
|
371 |
+
def encode_list(self, text, return_mask = False):
|
372 |
+
t5_embeds = self.t5_model.encode_list(text, return_mask = return_mask)
|
373 |
+
clip_embeds = self.clip_model.encode_list(text, return_mask = return_mask)
|
374 |
+
# change embedding strategy here
|
375 |
+
return {
|
376 |
+
'context': t5_embeds,
|
377 |
+
'y': clip_embeds,
|
378 |
+
}
|
379 |
+
|
380 |
+
def encode_list_of_list(self, text, return_mask = False):
|
381 |
+
t5_embeds = self.t5_model.encode_list_of_list(text, return_mask = return_mask)
|
382 |
+
clip_embeds = self.clip_model.encode_list_of_list(text, return_mask = return_mask)
|
383 |
+
# change embedding strategy here
|
384 |
+
return {
|
385 |
+
'context': t5_embeds,
|
386 |
+
'y': clip_embeds,
|
387 |
+
}
|
388 |
+
|
389 |
+
|
390 |
+
@staticmethod
|
391 |
+
def get_config_template():
|
392 |
+
return dict_to_yaml('EMBEDDER',
|
393 |
+
__class__.__name__,
|
394 |
+
T5ACEPlusClipFluxEmbedder.para_dict,
|
395 |
+
set_name=True)
|
396 |
+
|
397 |
@BACKBONES.register_class()
|
398 |
class Flux(BaseModel):
|
399 |
"""
|