File size: 2,608 Bytes
fc9052c
 
65be584
fc9052c
65be584
fc9052c
3c00238
 
 
 
 
fc9052c
65be584
3c00238
 
 
 
 
 
 
 
 
 
fc9052c
 
 
3c00238
 
 
 
 
 
fc9052c
 
 
3c00238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc9052c
65be584
b862d21
3c00238
b862d21
 
 
fc9052c
 
b862d21
 
fc9052c
65be584
fc9052c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import cv2
from PIL import Image
import numpy as np
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
import os

# Verify that Hugging Face repo and file paths are correct
REPO_ID = "StephanST/WALDO30"  # Update if the repository ID is different
MODEL_FILENAME = "WALDO30_yolov8m_640x640.pt"

# Download the model from Hugging Face
try:
    model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME)
except Exception as e:
    raise RuntimeError(f"Failed to download model from Hugging Face. Verify `repo_id` and `filename`. Error: {e}")

# Load the YOLOv8 model
try:
    model = YOLO(model_path)  # Ensure the model path is correct
except Exception as e:
    raise RuntimeError(f"Failed to load the YOLO model. Verify the model file at `{model_path}`. Error: {e}")

# Detection function for images
def detect_on_image(image):
    try:
        results = model(image)  # Perform detection
        annotated_frame = results[0].plot()  # Get annotated image
        return Image.fromarray(annotated_frame)
    except Exception as e:
        raise RuntimeError(f"Error during image processing: {e}")

# Detection function for videos
def detect_on_video(video):
    try:
        temp_video_path = "processed_video.mp4"
        cap = cv2.VideoCapture(video)
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(temp_video_path, fourcc, cap.get(cv2.CAP_PROP_FPS),
                              (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            results = model(frame)  # Perform detection
            annotated_frame = results[0].plot()  # Get annotated frame
            out.write(annotated_frame)

        cap.release()
        out.release()
        return temp_video_path
    except Exception as e:
        raise RuntimeError(f"Error during video processing: {e}")

# Gradio Interface
image_input = gr.Image(type="pil", label="Upload Image")
video_input = gr.Video(label="Upload Video")  # Removed invalid `type` argument
image_output = gr.Image(type="pil", label="Detected Image")
video_output = gr.Video(label="Detected Video")

app = gr.Interface(
    fn=[detect_on_image, detect_on_video],
    inputs=[image_input, video_input],
    outputs=[image_output, video_output],
    title="WALDO30 YOLOv8 Object Detection",
    description="Upload an image or video to see object detection results using the WALDO30 YOLOv8 model."
)

if __name__ == "__main__":
    app.launch()