Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
# Load the model from Hugging Face | |
model_path = hf_hub_download(repo_id="StephanST/WALDO30", filename="WALDO30_yolov8m_640x640.pt") | |
model = torch.hub.load('ultralytics/yolov8', 'custom', path=model_path) | |
# Detection function for images | |
def detect_on_image(image): | |
results = model(image) | |
results.render() # Render the bounding boxes on the image | |
detected_img = Image.fromarray(results.imgs[0]) # Convert to PIL format | |
return detected_img | |
# Detection function for videos | |
def detect_on_video(video): | |
temp_video_path = "processed_video.mp4" | |
cap = cv2.VideoCapture(video) | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(temp_video_path, fourcc, cap.get(cv2.CAP_PROP_FPS), | |
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = model(frame) # Run detection | |
results.render() | |
frame = np.squeeze(results.imgs[0]) # Extract processed frame | |
out.write(frame) # Write frame to output video | |
cap.release() | |
out.release() | |
return temp_video_path | |
# Create Gradio Interface | |
image_input = gr.inputs.Image(type="pil", label="Upload Image") | |
video_input = gr.inputs.Video(type="file", label="Upload Video") | |
image_output = gr.outputs.Image(type="pil", label="Detected Image") | |
video_output = gr.outputs.Video(label="Detected Video") | |
app = gr.Interface( | |
fn=[detect_on_image, detect_on_video], | |
inputs=[image_input, video_input], | |
outputs=[image_output, video_output], | |
title="WALDO30 YOLOv8 Object Detection", | |
description="Upload an image or video to see object detection results using WALDO30 YOLOv8 model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
app.launch() | |