File size: 4,093 Bytes
e8f2571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
_base_ = [
    './datasets/hsi_detection4x.py', './_base_/default_runtime.py'
]


in_channels = 30

model = dict(
    type='DINO',
    num_queries=900,  # num_matching_queries 900
    with_box_refine=True,
    as_two_stage=True,
    data_preprocessor=dict(
        type='HSIDetDataPreprocessor',
        pad_size_divisor=1),
    backbone=dict(
        type='ResNet',
        in_channels=in_channels,
        depth=50,
        num_stages=4,
        out_indices=(1, 2, 3),
        frozen_stages=-1,
        norm_cfg=dict(type='BN', requires_grad=False),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')
    ),
    neck=dict(
        type='ChannelMapper',
        in_channels=[512, 1024, 2048],
        kernel_size=1,
        out_channels=256,
        act_cfg=None,
        norm_cfg=dict(type='GN', num_groups=32),
        num_outs=4),
    encoder=dict(
        num_layers=6,
        layer_cfg=dict(
            self_attn_cfg=dict(embed_dims=256, num_levels=4,
                               dropout=0.0),  # 0.1 for DeformDETR
            ffn_cfg=dict(
                embed_dims=256,
                feedforward_channels=2048,  # 1024 for DeformDETR
                ffn_drop=0.0))),  # 0.1 for DeformDETR
    decoder=dict(
        num_layers=6,
        return_intermediate=True,
        layer_cfg=dict(
            self_attn_cfg=dict(embed_dims=256, num_heads=8,
                               dropout=0.0),  # 0.1 for DeformDETR
            cross_attn_cfg=dict(embed_dims=256, num_levels=4,
                                dropout=0.0),  # 0.1 for DeformDETR
            ffn_cfg=dict(
                embed_dims=256,
                feedforward_channels=2048,  # 1024 for DeformDETR
                ffn_drop=0.0)),  # 0.1 for DeformDETR
        post_norm_cfg=None),
    positional_encoding=dict(
        num_feats=128,
        normalize=True,
        offset=0.0,  # -0.5 for DeformDETR
        temperature=20),  # 10000 for DeformDETR
    bbox_head=dict(
        type='DINOHead',
        num_classes=8,
        sync_cls_avg_factor=True,
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),  # 2.0 in DeformDETR
        loss_bbox=dict(type='L1Loss', loss_weight=5.0),
        loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
    dn_cfg=dict(  # TODO: Move to model.train_cfg ?
        label_noise_scale=0.5,
        box_noise_scale=1.0,  # 0.4 for DN-DETR
        group_cfg=dict(dynamic=True, num_groups=None,
                       num_dn_queries=100)),  # TODO: half num_dn_queries
    # training and testing settings
    train_cfg=dict(
        assigner=dict(
            type='HungarianAssigner',
            match_costs=[
                dict(type='FocalLossCost', weight=2.0),
                dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
                dict(type='IoUCost', iou_mode='giou', weight=2.0)
            ])),
    test_cfg=dict(max_per_img=300))  # 100 for DeformDETR


# optimizer
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(
        type='AdamW',
        lr=0.0001,  # 0.0002 for DeformDETR
        weight_decay=0.0001),
    clip_grad=dict(max_norm=0.1, norm_type=2),
    paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1)})
)  # custom_keys contains sampling_offsets and reference_points in DeformDETR  # noqa

# learning policy
max_epochs = 12
train_cfg = dict(
    type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=12)

val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=max_epochs,
        by_epoch=True,
        milestones=[11],
        gamma=0.1)
]



train_dataloader = dict(
    batch_size=4,)
test_dataloader = dict(
    batch_size=1,)

# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (2 samples per GPU)
auto_scale_lr = dict(base_batch_size=4)