Collections: | |
- Name: Dynamic R-CNN | |
Metadata: | |
Training Data: COCO | |
Training Techniques: | |
- SGD with Momentum | |
- Weight Decay | |
Training Resources: 8x V100 GPUs | |
Architecture: | |
- Dynamic R-CNN | |
- FPN | |
- RPN | |
- ResNet | |
- RoIAlign | |
Paper: | |
URL: https://arxiv.org/pdf/2004.06002 | |
Title: 'Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training' | |
README: configs/dynamic_rcnn/README.md | |
Code: | |
URL: https://github.com/open-mmlab/mmdetection/blob/v2.2.0/mmdet/models/roi_heads/dynamic_roi_head.py#L11 | |
Version: v2.2.0 | |
Models: | |
- Name: dynamic-rcnn_r50_fpn_1x_coco | |
In Collection: Dynamic R-CNN | |
Config: configs/dynamic_rcnn/dynamic-rcnn_r50_fpn_1x_coco.py | |
Metadata: | |
Training Memory (GB): 3.8 | |
Epochs: 12 | |
Results: | |
- Task: Object Detection | |
Dataset: COCO | |
Metrics: | |
box AP: 38.9 | |
Weights: https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth | |