|
_base_ = [ |
|
'./datasets/hsi_detection4x.py', './_base_/default_runtime.py' |
|
] |
|
in_channels = 30 |
|
model = dict( |
|
type='DABDETR', |
|
num_queries=300, |
|
with_random_refpoints=False, |
|
num_patterns=0, |
|
data_preprocessor=dict( |
|
type='HSIDetDataPreprocessor', |
|
pad_size_divisor=1), |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(3, ), |
|
frozen_stages=-1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
in_channels=in_channels, |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), |
|
neck=dict( |
|
type='ChannelMapper', |
|
in_channels=[2048], |
|
kernel_size=1, |
|
out_channels=256, |
|
act_cfg=None, |
|
norm_cfg=None, |
|
num_outs=1), |
|
encoder=dict( |
|
num_layers=6, |
|
layer_cfg=dict( |
|
self_attn_cfg=dict( |
|
embed_dims=256, num_heads=8, dropout=0., batch_first=True), |
|
ffn_cfg=dict( |
|
embed_dims=256, |
|
feedforward_channels=2048, |
|
num_fcs=2, |
|
ffn_drop=0., |
|
act_cfg=dict(type='PReLU')))), |
|
decoder=dict( |
|
num_layers=6, |
|
query_dim=4, |
|
query_scale_type='cond_elewise', |
|
with_modulated_hw_attn=True, |
|
layer_cfg=dict( |
|
self_attn_cfg=dict( |
|
embed_dims=256, |
|
num_heads=8, |
|
attn_drop=0., |
|
proj_drop=0., |
|
cross_attn=False), |
|
cross_attn_cfg=dict( |
|
embed_dims=256, |
|
num_heads=8, |
|
attn_drop=0., |
|
proj_drop=0., |
|
cross_attn=True), |
|
ffn_cfg=dict( |
|
embed_dims=256, |
|
feedforward_channels=2048, |
|
num_fcs=2, |
|
ffn_drop=0., |
|
act_cfg=dict(type='PReLU'))), |
|
return_intermediate=True), |
|
positional_encoding=dict(num_feats=128, temperature=20, normalize=True), |
|
bbox_head=dict( |
|
type='DABDETRHead', |
|
num_classes=16, |
|
embed_dims=256, |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=5.0), |
|
loss_iou=dict(type='GIoULoss', loss_weight=2.0)), |
|
|
|
train_cfg=dict( |
|
assigner=dict( |
|
type='HungarianAssigner', |
|
match_costs=[ |
|
dict(type='FocalLossCost', weight=2., eps=1e-8), |
|
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), |
|
dict(type='IoUCost', iou_mode='giou', weight=2.0) |
|
])), |
|
test_cfg=dict(max_per_img=300)) |
|
|
|
|
|
|
|
|
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.0001), |
|
clip_grad=dict(max_norm=0.1, norm_type=2), |
|
paramwise_cfg=dict( |
|
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)})) |
|
|
|
|
|
max_epochs = 100 |
|
train_cfg = dict( |
|
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=20) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
|
|
param_scheduler = [ |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=max_epochs, |
|
by_epoch=True, |
|
milestones=[90], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=4, enable=False) |
|
|