|
|
|
from typing import List, Sequence, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmengine.model import ModuleList |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.models.task_modules.samplers import SamplingResult |
|
from mmdet.models.test_time_augs import merge_aug_masks |
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox2roi, get_box_tensor |
|
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, |
|
OptMultiConfig) |
|
from ..utils.misc import empty_instances, unpack_gt_instances |
|
from .base_roi_head import BaseRoIHead |
|
|
|
|
|
@MODELS.register_module() |
|
class CascadeRoIHead(BaseRoIHead): |
|
"""Cascade roi head including one bbox head and one mask head. |
|
|
|
https://arxiv.org/abs/1712.00726 |
|
""" |
|
|
|
def __init__(self, |
|
num_stages: int, |
|
stage_loss_weights: Union[List[float], Tuple[float]], |
|
bbox_roi_extractor: OptMultiConfig = None, |
|
bbox_head: OptMultiConfig = None, |
|
mask_roi_extractor: OptMultiConfig = None, |
|
mask_head: OptMultiConfig = None, |
|
shared_head: OptConfigType = None, |
|
train_cfg: OptConfigType = None, |
|
test_cfg: OptConfigType = None, |
|
init_cfg: OptMultiConfig = None) -> None: |
|
assert bbox_roi_extractor is not None |
|
assert bbox_head is not None |
|
assert shared_head is None, \ |
|
'Shared head is not supported in Cascade RCNN anymore' |
|
|
|
self.num_stages = num_stages |
|
self.stage_loss_weights = stage_loss_weights |
|
super().__init__( |
|
bbox_roi_extractor=bbox_roi_extractor, |
|
bbox_head=bbox_head, |
|
mask_roi_extractor=mask_roi_extractor, |
|
mask_head=mask_head, |
|
shared_head=shared_head, |
|
train_cfg=train_cfg, |
|
test_cfg=test_cfg, |
|
init_cfg=init_cfg) |
|
|
|
def init_bbox_head(self, bbox_roi_extractor: MultiConfig, |
|
bbox_head: MultiConfig) -> None: |
|
"""Initialize box head and box roi extractor. |
|
|
|
Args: |
|
bbox_roi_extractor (:obj:`ConfigDict`, dict or list): |
|
Config of box roi extractor. |
|
bbox_head (:obj:`ConfigDict`, dict or list): Config |
|
of box in box head. |
|
""" |
|
self.bbox_roi_extractor = ModuleList() |
|
self.bbox_head = ModuleList() |
|
if not isinstance(bbox_roi_extractor, list): |
|
bbox_roi_extractor = [ |
|
bbox_roi_extractor for _ in range(self.num_stages) |
|
] |
|
if not isinstance(bbox_head, list): |
|
bbox_head = [bbox_head for _ in range(self.num_stages)] |
|
assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages |
|
for roi_extractor, head in zip(bbox_roi_extractor, bbox_head): |
|
self.bbox_roi_extractor.append(MODELS.build(roi_extractor)) |
|
self.bbox_head.append(MODELS.build(head)) |
|
|
|
def init_mask_head(self, mask_roi_extractor: MultiConfig, |
|
mask_head: MultiConfig) -> None: |
|
"""Initialize mask head and mask roi extractor. |
|
|
|
Args: |
|
mask_head (dict): Config of mask in mask head. |
|
mask_roi_extractor (:obj:`ConfigDict`, dict or list): |
|
Config of mask roi extractor. |
|
""" |
|
self.mask_head = nn.ModuleList() |
|
if not isinstance(mask_head, list): |
|
mask_head = [mask_head for _ in range(self.num_stages)] |
|
assert len(mask_head) == self.num_stages |
|
for head in mask_head: |
|
self.mask_head.append(MODELS.build(head)) |
|
if mask_roi_extractor is not None: |
|
self.share_roi_extractor = False |
|
self.mask_roi_extractor = ModuleList() |
|
if not isinstance(mask_roi_extractor, list): |
|
mask_roi_extractor = [ |
|
mask_roi_extractor for _ in range(self.num_stages) |
|
] |
|
assert len(mask_roi_extractor) == self.num_stages |
|
for roi_extractor in mask_roi_extractor: |
|
self.mask_roi_extractor.append(MODELS.build(roi_extractor)) |
|
else: |
|
self.share_roi_extractor = True |
|
self.mask_roi_extractor = self.bbox_roi_extractor |
|
|
|
def init_assigner_sampler(self) -> None: |
|
"""Initialize assigner and sampler for each stage.""" |
|
self.bbox_assigner = [] |
|
self.bbox_sampler = [] |
|
if self.train_cfg is not None: |
|
for idx, rcnn_train_cfg in enumerate(self.train_cfg): |
|
self.bbox_assigner.append( |
|
TASK_UTILS.build(rcnn_train_cfg.assigner)) |
|
self.current_stage = idx |
|
self.bbox_sampler.append( |
|
TASK_UTILS.build( |
|
rcnn_train_cfg.sampler, |
|
default_args=dict(context=self))) |
|
|
|
def _bbox_forward(self, stage: int, x: Tuple[Tensor], |
|
rois: Tensor) -> dict: |
|
"""Box head forward function used in both training and testing. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
""" |
|
bbox_roi_extractor = self.bbox_roi_extractor[stage] |
|
bbox_head = self.bbox_head[stage] |
|
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], |
|
rois) |
|
|
|
cls_score, bbox_pred = bbox_head(bbox_feats) |
|
|
|
bbox_results = dict( |
|
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) |
|
return bbox_results |
|
|
|
def bbox_loss(self, stage: int, x: Tuple[Tensor], |
|
sampling_results: List[SamplingResult]) -> dict: |
|
"""Run forward function and calculate loss for box head in training. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): List of multi-level img features. |
|
sampling_results (list["obj:`SamplingResult`]): Sampling results. |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
- `loss_bbox` (dict): A dictionary of bbox loss components. |
|
- `rois` (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
- `bbox_targets` (tuple): Ground truth for proposals in a |
|
single image. Containing the following list of Tensors: |
|
(labels, label_weights, bbox_targets, bbox_weights) |
|
""" |
|
bbox_head = self.bbox_head[stage] |
|
rois = bbox2roi([res.priors for res in sampling_results]) |
|
bbox_results = self._bbox_forward(stage, x, rois) |
|
bbox_results.update(rois=rois) |
|
|
|
bbox_loss_and_target = bbox_head.loss_and_target( |
|
cls_score=bbox_results['cls_score'], |
|
bbox_pred=bbox_results['bbox_pred'], |
|
rois=rois, |
|
sampling_results=sampling_results, |
|
rcnn_train_cfg=self.train_cfg[stage]) |
|
bbox_results.update(bbox_loss_and_target) |
|
|
|
return bbox_results |
|
|
|
def _mask_forward(self, stage: int, x: Tuple[Tensor], |
|
rois: Tensor) -> dict: |
|
"""Mask head forward function used in both training and testing. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
""" |
|
mask_roi_extractor = self.mask_roi_extractor[stage] |
|
mask_head = self.mask_head[stage] |
|
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], |
|
rois) |
|
|
|
mask_preds = mask_head(mask_feats) |
|
|
|
mask_results = dict(mask_preds=mask_preds) |
|
return mask_results |
|
|
|
def mask_loss(self, stage: int, x: Tuple[Tensor], |
|
sampling_results: List[SamplingResult], |
|
batch_gt_instances: InstanceList) -> dict: |
|
"""Run forward function and calculate loss for mask head in training. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
sampling_results (list["obj:`SamplingResult`]): Sampling results. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes``, ``labels``, and |
|
``masks`` attributes. |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
- `loss_mask` (dict): A dictionary of mask loss components. |
|
""" |
|
pos_rois = bbox2roi([res.pos_priors for res in sampling_results]) |
|
mask_results = self._mask_forward(stage, x, pos_rois) |
|
|
|
mask_head = self.mask_head[stage] |
|
|
|
mask_loss_and_target = mask_head.loss_and_target( |
|
mask_preds=mask_results['mask_preds'], |
|
sampling_results=sampling_results, |
|
batch_gt_instances=batch_gt_instances, |
|
rcnn_train_cfg=self.train_cfg[stage]) |
|
mask_results.update(mask_loss_and_target) |
|
|
|
return mask_results |
|
|
|
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
roi on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components |
|
""" |
|
|
|
assert len(rpn_results_list) == len(batch_data_samples) |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ |
|
= outputs |
|
|
|
num_imgs = len(batch_data_samples) |
|
losses = dict() |
|
results_list = rpn_results_list |
|
for stage in range(self.num_stages): |
|
self.current_stage = stage |
|
|
|
stage_loss_weight = self.stage_loss_weights[stage] |
|
|
|
|
|
sampling_results = [] |
|
if self.with_bbox or self.with_mask: |
|
bbox_assigner = self.bbox_assigner[stage] |
|
bbox_sampler = self.bbox_sampler[stage] |
|
|
|
for i in range(num_imgs): |
|
results = results_list[i] |
|
|
|
results.priors = results.pop('bboxes') |
|
|
|
assign_result = bbox_assigner.assign( |
|
results, batch_gt_instances[i], |
|
batch_gt_instances_ignore[i]) |
|
|
|
sampling_result = bbox_sampler.sample( |
|
assign_result, |
|
results, |
|
batch_gt_instances[i], |
|
feats=[lvl_feat[i][None] for lvl_feat in x]) |
|
sampling_results.append(sampling_result) |
|
|
|
|
|
bbox_results = self.bbox_loss(stage, x, sampling_results) |
|
|
|
for name, value in bbox_results['loss_bbox'].items(): |
|
losses[f's{stage}.{name}'] = ( |
|
value * stage_loss_weight if 'loss' in name else value) |
|
|
|
|
|
if self.with_mask: |
|
mask_results = self.mask_loss(stage, x, sampling_results, |
|
batch_gt_instances) |
|
for name, value in mask_results['loss_mask'].items(): |
|
losses[f's{stage}.{name}'] = ( |
|
value * stage_loss_weight if 'loss' in name else value) |
|
|
|
|
|
if stage < self.num_stages - 1: |
|
bbox_head = self.bbox_head[stage] |
|
with torch.no_grad(): |
|
results_list = bbox_head.refine_bboxes( |
|
sampling_results, bbox_results, batch_img_metas) |
|
|
|
if results_list is None: |
|
break |
|
return losses |
|
|
|
def predict_bbox(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
rpn_results_list: InstanceList, |
|
rcnn_test_cfg: ConfigType, |
|
rescale: bool = False, |
|
**kwargs) -> InstanceList: |
|
"""Perform forward propagation of the bbox head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
proposals = [res.bboxes for res in rpn_results_list] |
|
num_proposals_per_img = tuple(len(p) for p in proposals) |
|
rois = bbox2roi(proposals) |
|
|
|
if rois.shape[0] == 0: |
|
return empty_instances( |
|
batch_img_metas, |
|
rois.device, |
|
task_type='bbox', |
|
box_type=self.bbox_head[-1].predict_box_type, |
|
num_classes=self.bbox_head[-1].num_classes, |
|
score_per_cls=rcnn_test_cfg is None) |
|
|
|
rois, cls_scores, bbox_preds = self._refine_roi( |
|
x=x, |
|
rois=rois, |
|
batch_img_metas=batch_img_metas, |
|
num_proposals_per_img=num_proposals_per_img, |
|
**kwargs) |
|
|
|
results_list = self.bbox_head[-1].predict_by_feat( |
|
rois=rois, |
|
cls_scores=cls_scores, |
|
bbox_preds=bbox_preds, |
|
batch_img_metas=batch_img_metas, |
|
rescale=rescale, |
|
rcnn_test_cfg=rcnn_test_cfg) |
|
return results_list |
|
|
|
def predict_mask(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
results_list: List[InstanceData], |
|
rescale: bool = False) -> List[InstanceData]: |
|
"""Perform forward propagation of the mask head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
results_list (list[:obj:`InstanceData`]): Detection results of |
|
each image. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- masks (Tensor): Has a shape (num_instances, H, W). |
|
""" |
|
bboxes = [res.bboxes for res in results_list] |
|
mask_rois = bbox2roi(bboxes) |
|
if mask_rois.shape[0] == 0: |
|
results_list = empty_instances( |
|
batch_img_metas, |
|
mask_rois.device, |
|
task_type='mask', |
|
instance_results=results_list, |
|
mask_thr_binary=self.test_cfg.mask_thr_binary) |
|
return results_list |
|
|
|
num_mask_rois_per_img = [len(res) for res in results_list] |
|
aug_masks = [] |
|
for stage in range(self.num_stages): |
|
mask_results = self._mask_forward(stage, x, mask_rois) |
|
mask_preds = mask_results['mask_preds'] |
|
|
|
mask_preds = mask_preds.split(num_mask_rois_per_img, 0) |
|
aug_masks.append([m.sigmoid().detach() for m in mask_preds]) |
|
|
|
merged_masks = [] |
|
for i in range(len(batch_img_metas)): |
|
aug_mask = [mask[i] for mask in aug_masks] |
|
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i]) |
|
merged_masks.append(merged_mask) |
|
results_list = self.mask_head[-1].predict_by_feat( |
|
mask_preds=merged_masks, |
|
results_list=results_list, |
|
batch_img_metas=batch_img_metas, |
|
rcnn_test_cfg=self.test_cfg, |
|
rescale=rescale, |
|
activate_map=True) |
|
return results_list |
|
|
|
def _refine_roi(self, x: Tuple[Tensor], rois: Tensor, |
|
batch_img_metas: List[dict], |
|
num_proposals_per_img: Sequence[int], **kwargs) -> tuple: |
|
"""Multi-stage refinement of RoI. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rois (Tensor): shape (n, 5), [batch_ind, x1, y1, x2, y2] |
|
batch_img_metas (list[dict]): List of image information. |
|
num_proposals_per_img (sequence[int]): number of proposals |
|
in each image. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- rois (Tensor): Refined RoI. |
|
- cls_scores (list[Tensor]): Average predicted |
|
cls score per image. |
|
- bbox_preds (list[Tensor]): Bbox branch predictions |
|
for the last stage of per image. |
|
""" |
|
|
|
ms_scores = [] |
|
for stage in range(self.num_stages): |
|
bbox_results = self._bbox_forward( |
|
stage=stage, x=x, rois=rois, **kwargs) |
|
|
|
|
|
cls_scores = bbox_results['cls_score'] |
|
bbox_preds = bbox_results['bbox_pred'] |
|
|
|
rois = rois.split(num_proposals_per_img, 0) |
|
cls_scores = cls_scores.split(num_proposals_per_img, 0) |
|
ms_scores.append(cls_scores) |
|
|
|
|
|
if bbox_preds is not None: |
|
|
|
|
|
if isinstance(bbox_preds, torch.Tensor): |
|
bbox_preds = bbox_preds.split(num_proposals_per_img, 0) |
|
else: |
|
bbox_preds = self.bbox_head[stage].bbox_pred_split( |
|
bbox_preds, num_proposals_per_img) |
|
else: |
|
bbox_preds = (None, ) * len(batch_img_metas) |
|
|
|
if stage < self.num_stages - 1: |
|
bbox_head = self.bbox_head[stage] |
|
if bbox_head.custom_activation: |
|
cls_scores = [ |
|
bbox_head.loss_cls.get_activation(s) |
|
for s in cls_scores |
|
] |
|
refine_rois_list = [] |
|
for i in range(len(batch_img_metas)): |
|
if rois[i].shape[0] > 0: |
|
bbox_label = cls_scores[i][:, :-1].argmax(dim=1) |
|
|
|
|
|
refined_bboxes = bbox_head.regress_by_class( |
|
rois[i][:, 1:], bbox_label, bbox_preds[i], |
|
batch_img_metas[i]) |
|
refined_bboxes = get_box_tensor(refined_bboxes) |
|
refined_rois = torch.cat( |
|
[rois[i][:, [0]], refined_bboxes], dim=1) |
|
refine_rois_list.append(refined_rois) |
|
rois = torch.cat(refine_rois_list) |
|
|
|
|
|
cls_scores = [ |
|
sum([score[i] for score in ms_scores]) / float(len(ms_scores)) |
|
for i in range(len(batch_img_metas)) |
|
] |
|
return rois, cls_scores, bbox_preds |
|
|
|
def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList) -> tuple: |
|
"""Network forward process. Usually includes backbone, neck and head |
|
forward without any post-processing. |
|
|
|
Args: |
|
x (List[Tensor]): Multi-level features that may have different |
|
resolutions. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains |
|
the meta information of each image and corresponding |
|
annotations. |
|
|
|
Returns |
|
tuple: A tuple of features from ``bbox_head`` and ``mask_head`` |
|
forward. |
|
""" |
|
results = () |
|
batch_img_metas = [ |
|
data_samples.metainfo for data_samples in batch_data_samples |
|
] |
|
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list] |
|
num_proposals_per_img = tuple(len(p) for p in proposals) |
|
rois = bbox2roi(proposals) |
|
|
|
if self.with_bbox: |
|
rois, cls_scores, bbox_preds = self._refine_roi( |
|
x, rois, batch_img_metas, num_proposals_per_img) |
|
results = results + (cls_scores, bbox_preds) |
|
|
|
if self.with_mask: |
|
aug_masks = [] |
|
rois = torch.cat(rois) |
|
for stage in range(self.num_stages): |
|
mask_results = self._mask_forward(stage, x, rois) |
|
mask_preds = mask_results['mask_preds'] |
|
mask_preds = mask_preds.split(num_proposals_per_img, 0) |
|
aug_masks.append([m.sigmoid().detach() for m in mask_preds]) |
|
|
|
merged_masks = [] |
|
for i in range(len(batch_img_metas)): |
|
aug_mask = [mask[i] for mask in aug_masks] |
|
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i]) |
|
merged_masks.append(merged_mask) |
|
results = results + (merged_masks, ) |
|
return results |
|
|