|
|
|
|
|
import sys |
|
|
|
import torch |
|
|
|
from mmdet.models.layers import multiclass_nms |
|
from mmdet.models.test_time_augs import merge_aug_bboxes, merge_aug_masks |
|
from mmdet.structures.bbox import bbox2roi, bbox_mapping |
|
|
|
if sys.version_info >= (3, 7): |
|
from mmdet.utils.contextmanagers import completed |
|
|
|
|
|
class BBoxTestMixin: |
|
|
|
if sys.version_info >= (3, 7): |
|
|
|
async def async_test_bboxes(self, |
|
x, |
|
img_metas, |
|
proposals, |
|
rcnn_test_cfg, |
|
rescale=False, |
|
**kwargs): |
|
"""Asynchronized test for box head without augmentation.""" |
|
rois = bbox2roi(proposals) |
|
roi_feats = self.bbox_roi_extractor( |
|
x[:len(self.bbox_roi_extractor.featmap_strides)], rois) |
|
if self.with_shared_head: |
|
roi_feats = self.shared_head(roi_feats) |
|
sleep_interval = rcnn_test_cfg.get('async_sleep_interval', 0.017) |
|
|
|
async with completed( |
|
__name__, 'bbox_head_forward', |
|
sleep_interval=sleep_interval): |
|
cls_score, bbox_pred = self.bbox_head(roi_feats) |
|
|
|
img_shape = img_metas[0]['img_shape'] |
|
scale_factor = img_metas[0]['scale_factor'] |
|
det_bboxes, det_labels = self.bbox_head.get_bboxes( |
|
rois, |
|
cls_score, |
|
bbox_pred, |
|
img_shape, |
|
scale_factor, |
|
rescale=rescale, |
|
cfg=rcnn_test_cfg) |
|
return det_bboxes, det_labels |
|
|
|
|
|
def aug_test_bboxes(self, feats, img_metas, rpn_results_list, |
|
rcnn_test_cfg): |
|
"""Test det bboxes with test time augmentation.""" |
|
aug_bboxes = [] |
|
aug_scores = [] |
|
for x, img_meta in zip(feats, img_metas): |
|
|
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
flip_direction = img_meta[0]['flip_direction'] |
|
|
|
proposals = bbox_mapping(rpn_results_list[0][:, :4], img_shape, |
|
scale_factor, flip, flip_direction) |
|
rois = bbox2roi([proposals]) |
|
bbox_results = self.bbox_forward(x, rois) |
|
bboxes, scores = self.bbox_head.get_bboxes( |
|
rois, |
|
bbox_results['cls_score'], |
|
bbox_results['bbox_pred'], |
|
img_shape, |
|
scale_factor, |
|
rescale=False, |
|
cfg=None) |
|
aug_bboxes.append(bboxes) |
|
aug_scores.append(scores) |
|
|
|
merged_bboxes, merged_scores = merge_aug_bboxes( |
|
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) |
|
if merged_bboxes.shape[0] == 0: |
|
|
|
det_bboxes = merged_bboxes.new_zeros(0, 5) |
|
det_labels = merged_bboxes.new_zeros((0, ), dtype=torch.long) |
|
else: |
|
det_bboxes, det_labels = multiclass_nms(merged_bboxes, |
|
merged_scores, |
|
rcnn_test_cfg.score_thr, |
|
rcnn_test_cfg.nms, |
|
rcnn_test_cfg.max_per_img) |
|
return det_bboxes, det_labels |
|
|
|
|
|
class MaskTestMixin: |
|
|
|
if sys.version_info >= (3, 7): |
|
|
|
async def async_test_mask(self, |
|
x, |
|
img_metas, |
|
det_bboxes, |
|
det_labels, |
|
rescale=False, |
|
mask_test_cfg=None): |
|
"""Asynchronized test for mask head without augmentation.""" |
|
|
|
ori_shape = img_metas[0]['ori_shape'] |
|
scale_factor = img_metas[0]['scale_factor'] |
|
if det_bboxes.shape[0] == 0: |
|
segm_result = [[] for _ in range(self.mask_head.num_classes)] |
|
else: |
|
if rescale and not isinstance(scale_factor, |
|
(float, torch.Tensor)): |
|
scale_factor = det_bboxes.new_tensor(scale_factor) |
|
_bboxes = ( |
|
det_bboxes[:, :4] * |
|
scale_factor if rescale else det_bboxes) |
|
mask_rois = bbox2roi([_bboxes]) |
|
mask_feats = self.mask_roi_extractor( |
|
x[:len(self.mask_roi_extractor.featmap_strides)], |
|
mask_rois) |
|
|
|
if self.with_shared_head: |
|
mask_feats = self.shared_head(mask_feats) |
|
if mask_test_cfg and \ |
|
mask_test_cfg.get('async_sleep_interval'): |
|
sleep_interval = mask_test_cfg['async_sleep_interval'] |
|
else: |
|
sleep_interval = 0.035 |
|
async with completed( |
|
__name__, |
|
'mask_head_forward', |
|
sleep_interval=sleep_interval): |
|
mask_pred = self.mask_head(mask_feats) |
|
segm_result = self.mask_head.get_results( |
|
mask_pred, _bboxes, det_labels, self.test_cfg, ori_shape, |
|
scale_factor, rescale) |
|
return segm_result |
|
|
|
|
|
def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): |
|
"""Test for mask head with test time augmentation.""" |
|
if det_bboxes.shape[0] == 0: |
|
segm_result = [[] for _ in range(self.mask_head.num_classes)] |
|
else: |
|
aug_masks = [] |
|
for x, img_meta in zip(feats, img_metas): |
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
flip_direction = img_meta[0]['flip_direction'] |
|
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, |
|
scale_factor, flip, flip_direction) |
|
mask_rois = bbox2roi([_bboxes]) |
|
mask_results = self._mask_forward(x, mask_rois) |
|
|
|
aug_masks.append( |
|
mask_results['mask_pred'].sigmoid().cpu().numpy()) |
|
merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) |
|
|
|
ori_shape = img_metas[0][0]['ori_shape'] |
|
scale_factor = det_bboxes.new_ones(4) |
|
segm_result = self.mask_head.get_results( |
|
merged_masks, |
|
det_bboxes, |
|
det_labels, |
|
self.test_cfg, |
|
ori_shape, |
|
scale_factor=scale_factor, |
|
rescale=False) |
|
return segm_result |
|
|