File size: 8,132 Bytes
d6ea71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""Implements a converter for regular SPADL actions to atomic actions."""

from typing import cast

import pandas as pd
from pandera.typing import DataFrame

import socceraction.spadl.config as _spadl
from socceraction.spadl.base import _add_dribbles
from socceraction.spadl.schema import SPADLSchema

from . import config as _atomicspadl
from .schema import AtomicSPADLSchema


def convert_to_atomic(actions: DataFrame[SPADLSchema]) -> DataFrame[AtomicSPADLSchema]:
    """Convert regular SPADL actions to atomic actions.

    Parameters
    ----------
    actions : pd.DataFrame
        A SPADL dataframe.

    Returns
    -------
    pd.DataFrame
        The Atomic-SPADL dataframe.
    """
    atomic_actions = cast(pd.DataFrame, actions.copy())
    atomic_actions = _extra_from_passes(atomic_actions)
    atomic_actions = _add_dribbles(atomic_actions)  # for some reason this adds more dribbles
    atomic_actions = _extra_from_shots(atomic_actions)
    atomic_actions = _extra_from_fouls(atomic_actions)
    atomic_actions = _convert_columns(atomic_actions)
    atomic_actions = _simplify(atomic_actions)
    return cast(DataFrame[AtomicSPADLSchema], atomic_actions)


def _extra_from_passes(actions: pd.DataFrame) -> pd.DataFrame:
    next_actions = actions.shift(-1)
    same_team = actions.team_id == next_actions.team_id

    passlike = [
        "pass",
        "cross",
        "throw_in",
        "freekick_short",
        "freekick_crossed",
        "corner_crossed",
        "corner_short",
        "clearance",
        "goalkick",
    ]
    pass_ids = [_spadl.actiontypes.index(ty) for ty in passlike]

    interceptionlike = [
        "interception",
        "tackle",
        "keeper_punch",
        "keeper_save",
        "keeper_claim",
        "keeper_pick_up",
    ]
    interception_ids = [_spadl.actiontypes.index(ty) for ty in interceptionlike]

    samegame = actions.game_id == next_actions.game_id
    sameperiod = actions.period_id == next_actions.period_id
    # samephase = next_actions.time_seconds - actions.time_seconds < max_pass_duration
    extra_idx = (
        actions.type_id.isin(pass_ids)
        & samegame
        & sameperiod  # & samephase
        & ~next_actions.type_id.isin(interception_ids)
    )

    prev = actions[extra_idx]
    nex = next_actions[extra_idx]

    extra = pd.DataFrame()
    extra["game_id"] = prev.game_id
    extra["original_event_id"] = prev.original_event_id
    extra["period_id"] = prev.period_id
    extra["action_id"] = prev.action_id + 0.1
    extra["time_seconds"] = (prev.time_seconds + nex.time_seconds) / 2
    extra["start_x"] = prev.end_x
    extra["start_y"] = prev.end_y
    extra["end_x"] = prev.end_x
    extra["end_y"] = prev.end_y
    extra["bodypart_id"] = _atomicspadl.bodyparts.index("foot")
    extra["result_id"] = -1

    offside = prev.result_id == _spadl.results.index("offside")
    out = ((nex.type_id == _atomicspadl.actiontypes.index("goalkick")) & (~same_team)) | (
        nex.type_id == _atomicspadl.actiontypes.index("throw_in")
    )
    ar = _atomicspadl.actiontypes
    extra["type_id"] = -1
    extra["type_id"] = (
        extra.type_id.mask(same_team, ar.index("receival"))
        .mask(~same_team, ar.index("interception"))
        .mask(out, ar.index("out"))
        .mask(offside, ar.index("offside"))
    )
    is_interception = extra["type_id"] == ar.index("interception")
    extra["team_id"] = prev.team_id.mask(is_interception, nex.team_id)
    extra["player_id"] = nex.player_id.mask(out | offside, prev.player_id).astype(
        prev.player_id.dtype
    )

    actions = pd.concat([actions, extra], ignore_index=True, sort=False)
    actions = actions.sort_values(["game_id", "period_id", "action_id"]).reset_index(drop=True)
    actions["action_id"] = range(len(actions))
    return actions


def _extra_from_shots(actions: pd.DataFrame) -> pd.DataFrame:
    next_actions = actions.shift(-1)

    shotlike = ["shot", "shot_freekick", "shot_penalty"]
    shot_ids = [_spadl.actiontypes.index(ty) for ty in shotlike]

    samegame = actions.game_id == next_actions.game_id
    sameperiod = actions.period_id == next_actions.period_id

    shot = actions.type_id.isin(shot_ids)
    goal = shot & (actions.result_id == _spadl.results.index("success"))
    owngoal = actions.result_id == _spadl.results.index("owngoal")
    next_corner_goalkick = next_actions.type_id.isin(
        [
            _atomicspadl.actiontypes.index("corner_crossed"),
            _atomicspadl.actiontypes.index("corner_short"),
            _atomicspadl.actiontypes.index("goalkick"),
        ]
    )
    out = shot & next_corner_goalkick & samegame & sameperiod

    extra_idx = goal | owngoal | out
    prev = actions[extra_idx]
    # nex = next_actions[extra_idx]

    extra = pd.DataFrame()
    extra["game_id"] = prev.game_id
    extra["original_event_id"] = prev.original_event_id
    extra["period_id"] = prev.period_id
    extra["action_id"] = prev.action_id + 0.1
    extra["time_seconds"] = prev.time_seconds  # + nex.time_seconds) / 2
    extra["start_x"] = prev.end_x
    extra["start_y"] = prev.end_y
    extra["end_x"] = prev.end_x
    extra["end_y"] = prev.end_y
    extra["bodypart_id"] = prev.bodypart_id
    extra["result_id"] = -1
    extra["team_id"] = prev.team_id
    extra["player_id"] = prev.player_id

    ar = _atomicspadl.actiontypes
    extra["type_id"] = -1
    extra["type_id"] = (
        extra.type_id.mask(out, ar.index("out"))
        .mask(goal, ar.index("goal"))
        .mask(owngoal, ar.index("owngoal"))
    )
    actions = pd.concat([actions, extra], ignore_index=True, sort=False)
    actions = actions.sort_values(["game_id", "period_id", "action_id"]).reset_index(drop=True)
    actions["action_id"] = range(len(actions))
    return actions


def _extra_from_fouls(actions: pd.DataFrame) -> pd.DataFrame:
    yellow = actions.result_id == _spadl.results.index("yellow_card")
    red = actions.result_id == _spadl.results.index("red_card")

    prev = actions[yellow | red]
    extra = pd.DataFrame()
    extra["game_id"] = prev.game_id
    extra["original_event_id"] = prev.original_event_id
    extra["period_id"] = prev.period_id
    extra["action_id"] = prev.action_id + 0.1
    extra["time_seconds"] = prev.time_seconds  # + nex.time_seconds) / 2
    extra["start_x"] = prev.end_x
    extra["start_y"] = prev.end_y
    extra["end_x"] = prev.end_x
    extra["end_y"] = prev.end_y
    extra["bodypart_id"] = prev.bodypart_id
    extra["result_id"] = -1
    extra["team_id"] = prev.team_id
    extra["player_id"] = prev.player_id

    ar = _atomicspadl.actiontypes
    extra["type_id"] = -1
    extra["type_id"] = extra.type_id.mask(yellow, ar.index("yellow_card")).mask(
        red, ar.index("red_card")
    )
    actions = pd.concat([actions, extra], ignore_index=True, sort=False)
    actions = actions.sort_values(["game_id", "period_id", "action_id"]).reset_index(drop=True)
    actions["action_id"] = range(len(actions))
    return actions


def _convert_columns(actions: pd.DataFrame) -> pd.DataFrame:
    actions["x"] = actions.start_x
    actions["y"] = actions.start_y
    actions["dx"] = actions.end_x - actions.start_x
    actions["dy"] = actions.end_y - actions.start_y
    return actions[
        [
            "game_id",
            "original_event_id",
            "action_id",
            "period_id",
            "time_seconds",
            "team_id",
            "player_id",
            "x",
            "y",
            "dx",
            "dy",
            "type_id",
            "bodypart_id",
        ]
    ]


def _simplify(actions: pd.DataFrame) -> pd.DataFrame:
    a = actions
    ar = _atomicspadl.actiontypes

    cornerlike = ["corner_crossed", "corner_short"]
    corner_ids = [_spadl.actiontypes.index(ty) for ty in cornerlike]

    freekicklike = ["freekick_crossed", "freekick_short", "shot_freekick"]
    freekick_ids = [_spadl.actiontypes.index(ty) for ty in freekicklike]

    a["type_id"] = a.type_id.mask(a.type_id.isin(corner_ids), ar.index("corner"))
    a["type_id"] = a.type_id.mask(a.type_id.isin(freekick_ids), ar.index("freekick"))
    return a