File size: 16,532 Bytes
d6ea71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
"""Implements serializers for Opta data."""
import copy
import datetime
import glob
import os
import re
import warnings
from collections.abc import Mapping
from pathlib import Path
from typing import Any, Optional, Union, cast
import pandas as pd # type: ignore
from pandera.typing import DataFrame
from socceraction.data.base import EventDataLoader
from .parsers import (
F1JSONParser,
F7XMLParser,
F9JSONParser,
F24JSONParser,
F24XMLParser,
MA1JSONParser,
MA3JSONParser,
OptaParser,
WhoScoredParser,
)
from .schema import (
OptaCompetitionSchema,
OptaEventSchema,
OptaGameSchema,
OptaPlayerSchema,
OptaTeamSchema,
)
_jsonparsers = {
"f1": F1JSONParser,
"f9": F9JSONParser,
"f24": F24JSONParser,
"ma1": MA1JSONParser,
"ma3": MA3JSONParser,
}
_xmlparsers = {
"f7": F7XMLParser,
"f24": F24XMLParser,
}
_statsperformparsers = {
"ma1": MA1JSONParser,
"ma3": MA3JSONParser,
}
_whoscoredparsers = {
"whoscored": WhoScoredParser,
}
_eventtypesdf = pd.DataFrame(
[
(1, "pass"),
(2, "offside pass"),
(3, "take on"),
(4, "foul"),
(5, "out"),
(6, "corner awarded"),
(7, "tackle"),
(8, "interception"),
(9, "turnover"),
(10, "save"),
(11, "claim"),
(12, "clearance"),
(13, "miss"),
(14, "post"),
(15, "attempt saved"),
(16, "goal"),
(17, "card"),
(18, "player off"),
(19, "player on"),
(20, "player retired"),
(21, "player returns"),
(22, "player becomes goalkeeper"),
(23, "goalkeeper becomes player"),
(24, "condition change"),
(25, "official change"),
(26, "unknown26"),
(27, "start delay"),
(28, "end delay"),
(29, "unknown29"),
(30, "end"),
(31, "unknown31"),
(32, "start"),
(33, "unknown33"),
(34, "team set up"),
(35, "player changed position"),
(36, "player changed jersey number"),
(37, "collection end"),
(38, "temp_goal"),
(39, "temp_attempt"),
(40, "formation change"),
(41, "punch"),
(42, "good skill"),
(43, "deleted event"),
(44, "aerial"),
(45, "challenge"),
(46, "unknown46"),
(47, "rescinded card"),
(48, "unknown46"),
(49, "ball recovery"),
(50, "dispossessed"),
(51, "error"),
(52, "keeper pick-up"),
(53, "cross not claimed"),
(54, "smother"),
(55, "offside provoked"),
(56, "shield ball opp"),
(57, "foul throw in"),
(58, "penalty faced"),
(59, "keeper sweeper"),
(60, "chance missed"),
(61, "ball touch"),
(62, "unknown62"),
(63, "temp_save"),
(64, "resume"),
(65, "contentious referee decision"),
(66, "possession data"),
(67, "50/50"),
(68, "referee drop ball"),
(69, "failed to block"),
(70, "injury time announcement"),
(71, "coach setup"),
(72, "caught offside"),
(73, "other ball contact"),
(74, "blocked pass"),
(75, "delayed start"),
(76, "early end"),
(77, "player off pitch"),
(78, "temp card"),
(79, "coverage interruption"),
(80, "drop of ball"),
(81, "obstacle"),
(83, "attempted tackle"),
(84, "deleted after review"),
(10000, "offside given"), # Seems specific to WhoScored
],
columns=["type_id", "type_name"],
)
def _deepupdate(target: dict[Any, Any], src: dict[Any, Any]) -> None:
"""Deep update target dict with src.
For each k,v in src: if k doesn't exist in target, it is deep copied from
src to target. Otherwise, if v is a list, target[k] is extended with
src[k]. If v is a set, target[k] is updated with v, If v is a dict,
recursively deep-update it.
Parameters
----------
target: dict
The original dictionary which is updated.
src: dict
The dictionary with which `target` is updated.
Examples
--------
>>> t = {'name': 'ferry', 'hobbies': ['programming', 'sci-fi']}
>>> deepupdate(t, {'hobbies': ['gaming']})
>>> print(t)
{'name': 'ferry', 'hobbies': ['programming', 'sci-fi', 'gaming']}
"""
for k, v in src.items():
if isinstance(v, list):
if k not in target:
target[k] = copy.deepcopy(v)
else:
target[k].extend(v)
elif isinstance(v, dict):
if k not in target:
target[k] = copy.deepcopy(v)
else:
_deepupdate(target[k], v)
elif isinstance(v, set):
if k not in target:
target[k] = v.copy()
else:
target[k].update(v.copy())
else:
target[k] = copy.copy(v)
def _extract_ids_from_path(path: str, pattern: str) -> dict[str, Union[str, int]]:
regex = re.compile(
".+?"
+ re.escape(pattern)
.replace(r"\{competition_id\}", r"(?P<competition_id>[a-zA-Zà-üÀ-Ü0-9-_ ]+)")
.replace(r"\{season_id\}", r"(?P<season_id>[a-zA-Zà-üÀ-Ü0-9-_ ]+)")
.replace(r"\{game_id\}", r"(?P<game_id>[a-zA-Zà-üÀ-Ü0-9-_ ]+)")
)
m = re.match(regex, path)
if m is None:
raise ValueError(f"The filepath {path} does not match the format {pattern}.")
ids = m.groupdict()
return {k: int(v) if v.isdigit() else v for k, v in ids.items()}
class OptaLoader(EventDataLoader):
"""Load Opta data feeds from a local folder.
Parameters
----------
root : str
Root-path of the data.
parser : str or dict
Either 'xml', 'json', 'statsperform', 'whoscored' or a dict with
a custom parser for each feed. The default xml parser supports F7 and
F24 feeds; the default json parser supports F1, F9 and F24 feeds, the
StatsPerform parser supports MA1 and MA3 feeds. Custom parsers can be
specified as::
{
'feed1_name': Feed1Parser
'feed2_name': Feed2Parser
}
where Feed1Parser and Feed2Parser are classes implementing
:class:`~socceraction.spadl.opta.OptaParser` and 'feed1_name' and
'feed2_name' are a unique ID for each feed that matches to the keys in
`feeds`.
feeds : dict
Glob pattern describing from which files the data from a specific game
can be retrieved. For example, if files are named::
f7-1-2021-17362.xml
f24-1-2021-17362.xml
use::
feeds = {
'f7': "f7-{competition_id}-{season_id}-{game_id}.xml",
'f24': "f24-{competition_id}-{season_id}-{game_id}.xml"
}
Raises
------
ValueError
If an invalid parser is provided.
"""
def __init__( # noqa: C901
self,
root: str,
parser: Union[str, Mapping[str, type[OptaParser]]] = "xml",
feeds: Optional[dict[str, str]] = None,
) -> None:
self.root = root
if parser == "json":
if feeds is None:
feeds = {
"f1": "f1-{competition_id}-{season_id}.json",
"f9": "f9-{competition_id}-{season_id}-{game_id}.json",
"f24": "f24-{competition_id}-{season_id}-{game_id}.json",
}
self.parsers = self._get_parsers_for_feeds(_jsonparsers, feeds)
elif parser == "xml":
if feeds is None:
feeds = {
"f7": "f7-{competition_id}-{season_id}-{game_id}.xml",
"f24": "f24-{competition_id}-{season_id}-{game_id}.xml",
}
self.parsers = self._get_parsers_for_feeds(_xmlparsers, feeds)
elif parser == "statsperform":
if feeds is None:
feeds = {
"ma1": "ma1-{competition_id}-{season_id}.json",
"ma3": "ma3-{competition_id}-{season_id}-{game_id}.json",
}
self.parsers = self._get_parsers_for_feeds(_statsperformparsers, feeds)
elif parser == "whoscored":
if feeds is None:
feeds = {
"whoscored": "{competition_id}-{season_id}-{game_id}.json",
}
self.parsers = self._get_parsers_for_feeds(_whoscoredparsers, feeds)
elif isinstance(parser, dict):
if feeds is None:
raise ValueError("You must specify a feed for each parser.")
self.parsers = self._get_parsers_for_feeds(parser, feeds)
else:
raise ValueError("Invalid parser provided.")
self.feeds = {k: str(Path(v)) for k, v in feeds.items()}
def _get_parsers_for_feeds(
self, available_parsers: Mapping[str, type[OptaParser]], feeds: dict[str, str]
) -> Mapping[str, type[OptaParser]]:
"""Select the appropriate parser for each feed.
Parameters
----------
available_parsers : dict(str, OptaParser)
Dictionary with all available parsers.
feeds : dict(str, str)
All feeds that should be parsed.
Returns
-------
dict(str, OptaParser)
A mapping between all feeds that should be parsed and the
corresponding parser class.
Warns
-----
Raises a warning if there is no parser available for any of the
provided feeds.
"""
parsers = {}
for feed in feeds:
if feed in available_parsers:
parsers[feed] = available_parsers[feed]
else:
warnings.warn(f"No parser available for {feed} feeds. This feed is ignored.")
return parsers
def competitions(self) -> DataFrame[OptaCompetitionSchema]:
"""Return a dataframe with all available competitions and seasons.
Returns
-------
pd.DataFrame
A dataframe containing all available competitions and seasons. See
:class:`~socceraction.spadl.opta.OptaCompetitionSchema` for the schema.
"""
data: dict[int, dict[str, Any]] = {}
loaded_seasons = set()
for feed, feed_pattern in self.feeds.items():
glob_pattern = feed_pattern.format(competition_id="*", season_id="*", game_id="*")
feed_files = glob.glob(os.path.join(self.root, glob_pattern))
for ffp in feed_files:
ids = _extract_ids_from_path(ffp, feed_pattern)
# For efficiency, we only parse one game for each season. This
# only works if both the competition and season are part of
# the file name.
competition_id = ids.get("competition_id")
season_id = ids.get("season_id")
if competition_id is not None and season_id is not None:
if (competition_id, season_id) in loaded_seasons:
continue
else:
loaded_seasons.add((competition_id, season_id))
parser = self.parsers[feed](ffp, **ids)
_deepupdate(data, parser.extract_competitions())
return cast(DataFrame[OptaCompetitionSchema], pd.DataFrame(list(data.values())))
def games(self, competition_id: int, season_id: int) -> DataFrame[OptaGameSchema]:
"""Return a dataframe with all available games in a season.
Parameters
----------
competition_id : int
The ID of the competition.
season_id : int
The ID of the season.
Returns
-------
pd.DataFrame
A dataframe containing all available games. See
:class:`~socceraction.spadl.opta.OptaGameSchema` for the schema.
"""
data: dict[int, dict[str, Any]] = {}
for feed, feed_pattern in self.feeds.items():
glob_pattern = feed_pattern.format(
competition_id=competition_id, season_id=season_id, game_id="*"
)
feed_files = glob.glob(os.path.join(self.root, glob_pattern))
for ffp in feed_files:
ids = _extract_ids_from_path(ffp, feed_pattern)
parser = self.parsers[feed](ffp, **ids)
_deepupdate(data, parser.extract_games())
return cast(DataFrame[OptaGameSchema], pd.DataFrame(list(data.values())))
def teams(self, game_id: int) -> DataFrame[OptaTeamSchema]:
"""Return a dataframe with both teams that participated in a game.
Parameters
----------
game_id : int
The ID of the game.
Returns
-------
pd.DataFrame
A dataframe containing both teams. See
:class:`~socceraction.spadl.opta.OptaTeamSchema` for the schema.
"""
data: dict[int, dict[str, Any]] = {}
for feed, feed_pattern in self.feeds.items():
glob_pattern = feed_pattern.format(competition_id="*", season_id="*", game_id=game_id)
feed_files = glob.glob(os.path.join(self.root, glob_pattern))
for ffp in feed_files:
ids = _extract_ids_from_path(ffp, feed_pattern)
parser = self.parsers[feed](ffp, **ids)
_deepupdate(data, parser.extract_teams())
return cast(DataFrame[OptaTeamSchema], pd.DataFrame(list(data.values())))
def players(self, game_id: int) -> DataFrame[OptaPlayerSchema]:
"""Return a dataframe with all players that participated in a game.
Parameters
----------
game_id : int
The ID of the game.
Returns
-------
pd.DataFrame
A dataframe containing all players. See
:class:`~socceraction.spadl.opta.OptaPlayerSchema` for the schema.
"""
data: dict[int, dict[str, Any]] = {}
for feed, feed_pattern in self.feeds.items():
glob_pattern = feed_pattern.format(competition_id="*", season_id="*", game_id=game_id)
feed_files = glob.glob(os.path.join(self.root, glob_pattern))
for ffp in feed_files:
ids = _extract_ids_from_path(ffp, feed_pattern)
parser = self.parsers[feed](ffp, **ids)
_deepupdate(data, parser.extract_players())
df_players = pd.DataFrame(list(data.values()))
df_players["game_id"] = game_id
return cast(DataFrame[OptaPlayerSchema], df_players)
def events(self, game_id: int) -> DataFrame[OptaEventSchema]:
"""Return a dataframe with the event stream of a game.
Parameters
----------
game_id : int
The ID of the game.
Returns
-------
pd.DataFrame
A dataframe containing the event stream. See
:class:`~socceraction.spadl.opta.OptaEventSchema` for the schema.
"""
data: dict[int, dict[str, Any]] = {}
for feed, feed_pattern in self.feeds.items():
glob_pattern = feed_pattern.format(competition_id="*", season_id="*", game_id=game_id)
feed_files = glob.glob(os.path.join(self.root, glob_pattern))
for ffp in feed_files:
ids = _extract_ids_from_path(ffp, feed_pattern)
parser = self.parsers[feed](ffp, **ids)
_deepupdate(data, parser.extract_events())
events = (
pd.DataFrame(list(data.values()))
.merge(_eventtypesdf, on="type_id", how="left")
.sort_values(
["game_id", "period_id", "minute", "second", "timestamp"], kind="mergesort"
)
.reset_index(drop=True)
)
# sometimes pre-match events has -3, -2 and -1 seconds
events.loc[events.second < 0, "second"] = 0
events = events.sort_values(
["game_id", "period_id", "minute", "second", "timestamp"], kind="mergesort"
)
# deleted events has wrong datetime which occurs OutOfBoundsDatetime error
events = events[events.type_id != 43]
events = events[
~(
(events.timestamp < datetime.datetime(1900, 1, 1))
| (events.timestamp > datetime.datetime(2100, 1, 1))
)
]
return cast(DataFrame[OptaEventSchema], events)
|