File size: 32,143 Bytes
d6ea71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
"""Implements serializers for Wyscout data."""

import glob
import os
import re
import warnings
from pathlib import Path
from typing import Any, Callable, Optional, Union, cast
from urllib.error import HTTPError
from urllib.parse import urlparse
from urllib.request import urlopen, urlretrieve
from zipfile import ZipFile, is_zipfile

import pandas as pd  # type: ignore
from pandera.typing import DataFrame

from ..base import (
    EventDataLoader,
    JSONType,
    MissingDataError,
    ParseError,
    _auth_remoteloadjson,
    _expand_minute,
    _has_auth,
    _localloadjson,
    _remoteloadjson,
)
from .schema import (
    WyscoutCompetitionSchema,
    WyscoutEventSchema,
    WyscoutGameSchema,
    WyscoutPlayerSchema,
    WyscoutTeamSchema,
)


class PublicWyscoutLoader(EventDataLoader):
    """
    Load the public Wyscout dataset.

    This dataset is a public release of event stream data, collected by Wyscout
    (https://wyscout.com/) containing all matches of the 2017/18 season of the
    top-5 European leagues (La Liga, Serie A, Bundesliga, Premier League, Ligue
    1), the FIFA World Cup 2018, and UEFA Euro Cup 2016. For a detailed
    description, see Pappalardo et al. [1]_.

    Parameters
    ----------
    root : str
        Path where a local copy of the dataset is stored or where the
        downloaded dataset should be stored.
    download : bool
        Whether to force a redownload of the data.

    References
    ----------
    .. [1] Pappalardo, L., Cintia, P., Rossi, A. et al. A public data set of
        spatio-temporal match events in soccer competitions. Sci Data 6, 236
        (2019). https://doi.org/10.1038/s41597-019-0247-7
    """

    def __init__(self, root: Optional[str] = None, download: bool = False) -> None:
        if root is None:
            self.root = os.path.join(os.getcwd(), "wyscout_data")
            os.makedirs(self.root, exist_ok=True)
        else:
            self.root = root

        self.get = _localloadjson

        if download or len(os.listdir(self.root)) == 0:
            self._download_repo()

        self._index = pd.DataFrame(
            [
                {
                    "competition_id": 524,
                    "season_id": 181248,
                    "season_name": "2017/2018",
                    "db_matches": "matches_Italy.json",
                    "db_events": "events_Italy.json",
                },
                {
                    "competition_id": 364,
                    "season_id": 181150,
                    "season_name": "2017/2018",
                    "db_matches": "matches_England.json",
                    "db_events": "events_England.json",
                },
                {
                    "competition_id": 795,
                    "season_id": 181144,
                    "season_name": "2017/2018",
                    "db_matches": "matches_Spain.json",
                    "db_events": "events_Spain.json",
                },
                {
                    "competition_id": 412,
                    "season_id": 181189,
                    "season_name": "2017/2018",
                    "db_matches": "matches_France.json",
                    "db_events": "events_France.json",
                },
                {
                    "competition_id": 426,
                    "season_id": 181137,
                    "season_name": "2017/2018",
                    "db_matches": "matches_Germany.json",
                    "db_events": "events_Germany.json",
                },
                {
                    "competition_id": 102,
                    "season_id": 9291,
                    "season_name": "2016",
                    "db_matches": "matches_European_Championship.json",
                    "db_events": "events_European_Championship.json",
                },
                {
                    "competition_id": 28,
                    "season_id": 10078,
                    "season_name": "2018",
                    "db_matches": "matches_World_Cup.json",
                    "db_events": "events_World_Cup.json",
                },
            ]
        ).set_index(["competition_id", "season_id"])
        self._match_index = self._create_match_index().set_index("match_id")
        self._cache: Optional[dict[str, Any]] = None

    def _download_repo(self) -> None:
        dataset_urls = {
            "competitions": "https://ndownloader.figshare.com/files/15073685",
            "teams": "https://ndownloader.figshare.com/files/15073697",
            "players": "https://ndownloader.figshare.com/files/15073721",
            "matches": "https://ndownloader.figshare.com/files/14464622",
            "events": "https://ndownloader.figshare.com/files/14464685",
        }
        # download and unzip Wyscout open data
        for url in dataset_urls.values():
            url_obj = urlopen(url).geturl()
            path = Path(urlparse(url_obj).path)
            file_name = os.path.join(self.root, path.name)
            file_local, _ = urlretrieve(url_obj, file_name)
            if is_zipfile(file_local):
                with ZipFile(file_local) as zip_file:
                    zip_file.extractall(self.root)

    def _create_match_index(self) -> pd.DataFrame:
        df_matches = pd.concat(
            [pd.DataFrame(self.get(path)) for path in glob.iglob(f"{self.root}/matches_*.json")]
        )
        df_matches.rename(
            columns={
                "wyId": "match_id",
                "competitionId": "competition_id",
                "seasonId": "season_id",
            },
            inplace=True,
        )
        return pd.merge(
            df_matches[["match_id", "competition_id", "season_id"]],
            self._index,
            on=["competition_id", "season_id"],
            how="left",
        )

    def competitions(self) -> DataFrame[WyscoutCompetitionSchema]:
        """Return a dataframe with all available competitions and seasons.

        Returns
        -------
        pd.DataFrame
            A dataframe containing all available competitions and seasons. See
            :class:`~socceraction.spadl.wyscout.WyscoutCompetitionSchema` for the schema.
        """
        path = os.path.join(self.root, "competitions.json")
        df_competitions = pd.DataFrame(self.get(path))
        df_competitions.rename(
            columns={"wyId": "competition_id", "name": "competition_name"}, inplace=True
        )
        df_competitions["country_name"] = df_competitions.apply(
            lambda x: x.area["name"] if x.area["name"] != "" else "International", axis=1
        )
        df_competitions["competition_gender"] = "male"
        df_competitions = pd.merge(
            df_competitions,
            self._index.reset_index()[["competition_id", "season_id", "season_name"]],
            on="competition_id",
            how="left",
        )
        return cast(
            DataFrame[WyscoutCompetitionSchema],
            df_competitions.reset_index()[
                [
                    "competition_id",
                    "season_id",
                    "country_name",
                    "competition_name",
                    "competition_gender",
                    "season_name",
                ]
            ],
        )

    def games(self, competition_id: int, season_id: int) -> DataFrame[WyscoutGameSchema]:
        """Return a dataframe with all available games in a season.

        Parameters
        ----------
        competition_id : int
            The ID of the competition.
        season_id : int
            The ID of the season.

        Returns
        -------
        pd.DataFrame
            A dataframe containing all available games. See
            :class:`~socceraction.spadl.wyscout.WyscoutGameSchema` for the schema.
        """
        path = os.path.join(self.root, self._index.at[(competition_id, season_id), "db_matches"])
        df_matches = pd.DataFrame(self.get(path))
        return cast(DataFrame[WyscoutGameSchema], _convert_games(df_matches))

    def _lineups(self, game_id: int) -> list[dict[str, Any]]:
        competition_id, season_id = self._match_index.loc[game_id, ["competition_id", "season_id"]]
        path = os.path.join(self.root, self._index.at[(competition_id, season_id), "db_matches"])
        df_matches = pd.DataFrame(self.get(path)).set_index("wyId")
        return list(df_matches.at[game_id, "teamsData"].values())

    def teams(self, game_id: int) -> DataFrame[WyscoutTeamSchema]:
        """Return a dataframe with both teams that participated in a game.

        Parameters
        ----------
        game_id : int
            The ID of the game.

        Returns
        -------
        pd.DataFrame
            A dataframe containing both teams. See
            :class:`~socceraction.spadl.wyscout.WyscoutTeamSchema` for the schema.
        """
        path = os.path.join(self.root, "teams.json")
        df_teams = pd.DataFrame(self.get(path)).set_index("wyId")
        df_teams_match_id = pd.DataFrame(self._lineups(game_id))["teamId"]
        df_teams_match = df_teams.loc[df_teams_match_id].reset_index()
        return cast(DataFrame[WyscoutTeamSchema], _convert_teams(df_teams_match))

    def players(self, game_id: int) -> DataFrame[WyscoutPlayerSchema]:
        """Return a dataframe with all players that participated in a game.

        Parameters
        ----------
        game_id : int
            The ID of the game.

        Returns
        -------
        pd.DataFrame
            A dataframe containing all players. See
            :class:`~socceraction.spadl.wyscout.WyscoutPlayerSchema` for the schema.
        """
        path = os.path.join(self.root, "players.json")
        df_players = pd.DataFrame(self.get(path)).set_index("wyId")
        lineups = self._lineups(game_id)
        players_match = []
        for team in lineups:
            playerlist = team["formation"]["lineup"]
            if team["formation"]["substitutions"] != "null":
                for p in team["formation"]["substitutions"]:
                    try:
                        playerlist.append(
                            next(
                                item
                                for item in team["formation"]["bench"]
                                if item["playerId"] == p["playerIn"]
                            )
                        )
                    except StopIteration:
                        warnings.warn(
                            f'A player with ID={p["playerIn"]} was substituted '
                            f'in the {p["minute"]}th minute of game {game_id}, but '
                            "could not be found on the bench."
                        )
            df = pd.DataFrame(playerlist)
            df["side"] = team["side"]
            df["team_id"] = team["teamId"]
            players_match.append(df)
        df_players_match = (
            pd.concat(players_match)
            .rename(columns={"playerId": "wyId"})
            .set_index("wyId")
            .join(df_players, how="left")
        )
        df_players_match.reset_index(inplace=True)
        for c in ["shortName", "lastName", "firstName"]:
            df_players_match[c] = df_players_match[c].apply(
                lambda x: x.encode().decode("unicode-escape")
            )
        df_players_match = _convert_players(df_players_match)

        # get minutes played
        competition_id, season_id = self._match_index.loc[game_id, ["competition_id", "season_id"]]
        path = os.path.join(self.root, self._index.at[(competition_id, season_id), "db_events"])
        if self._cache is not None and self._cache["path"] == path:
            df_events = self._cache["events"]
        else:
            df_events = pd.DataFrame(self.get(path)).set_index("matchId")
            # avoid that this large json file has to be parsed again for
            # each game when loading a batch of games from the same season
            self._cache = {"path": path, "events": df_events}
        match_events = df_events.loc[game_id].reset_index().to_dict("records")
        mp = _get_minutes_played(lineups, match_events)
        df_players_match = pd.merge(df_players_match, mp, on="player_id", how="right")
        df_players_match["minutes_played"] = df_players_match.minutes_played.fillna(0)
        df_players_match["game_id"] = game_id
        return cast(DataFrame[WyscoutPlayerSchema], df_players_match)

    def events(self, game_id: int) -> DataFrame[WyscoutEventSchema]:
        """Return a dataframe with the event stream of a game.

        Parameters
        ----------
        game_id : int
            The ID of the game.

        Returns
        -------
        pd.DataFrame
            A dataframe containing the event stream. See
            :class:`~socceraction.spadl.wyscout.WyscoutEventSchema` for the schema.
        """
        competition_id, season_id = self._match_index.loc[game_id, ["competition_id", "season_id"]]
        path = os.path.join(self.root, self._index.at[(competition_id, season_id), "db_events"])
        if self._cache is not None and self._cache["path"] == path:
            df_events = self._cache["events"]
        else:
            df_events = pd.DataFrame(self.get(path)).set_index("matchId")
            # avoid that this large json file has to be parsed again for
            # each game when loading a batch of games from the same season
            self._cache = {"path": path, "events": df_events}
        return cast(
            DataFrame[WyscoutEventSchema], _convert_events(df_events.loc[game_id].reset_index())
        )


class WyscoutLoader(EventDataLoader):
    """Load event data either from a remote location or from a local folder.

    Parameters
    ----------
    root : str
        Root-path of the data.
    getter : str or callable, default: "remote"
        "remote", "local" or a function that returns loads JSON data from a path.
    feeds : dict(str, str)
        Glob pattern for each feed that should be parsed. The default feeds for
        a "remote" getter are::

            {
                'competitions': 'competitions',
                'seasons': 'competitions/{season_id}/seasons',
                'games': 'seasons/{season_id}/matches',
                'events': 'matches/{game_id}/events?fetch=teams,players,match,substitutions'
            }

        The default feeds for a "local" getter are::

            {
                'competitions': 'competitions.json',
                'seasons': 'seasons_{competition_id}.json',
                'games': 'matches_{season_id}.json',
                'events': 'matches/events_{game_id}.json',
            }

    creds: dict, optional
        Login credentials in the format {"user": "", "passwd": ""}. Only used
        when getter is "remote".
    """

    _wyscout_api: str = "https://apirest.wyscout.com/v2/"

    def __init__(
        self,
        root: str = _wyscout_api,
        getter: Union[str, Callable[[str], JSONType]] = "remote",
        feeds: Optional[dict[str, str]] = None,
        creds: Optional[dict[str, str]] = None,
    ) -> None:
        self.root = root

        # Init credentials
        if creds is None:
            creds = {
                "user": os.environ.get("WY_USERNAME", ""),
                "passwd": os.environ.get("WY_PASSWORD", ""),
            }

        # Init getter
        if getter == "remote":
            self.get = _remoteloadjson
            if _has_auth(creds):
                _auth_remoteloadjson(creds["user"], creds["passwd"])
        elif getter == "local":
            self.get = _localloadjson
        else:
            self.get = getter  # type: ignore

        # Set up feeds
        if feeds is not None:
            self.feeds = feeds
        elif getter == "remote":
            self.feeds = {
                "seasons": "competitions/{competition_id}/seasons?fetch=competition",
                "games": "seasons/{season_id}/matches",
                "events": "matches/{game_id}/events?fetch=teams,players,match,coaches,referees,formations,substitutions",  # noqa: B950
            }
        elif getter == "local":
            self.feeds = {
                "competitions": "competitions.json",
                "seasons": "seasons_{competition_id}.json",
                "games": "matches_{season_id}.json",
                "events": "matches/events_{game_id}.json",
            }
        else:
            raise ValueError("No feeds specified.")

    def _get_file_or_url(
        self,
        feed: str,
        competition_id: Optional[int] = None,
        season_id: Optional[int] = None,
        game_id: Optional[int] = None,
    ) -> list[str]:
        competition_id_glob = "*" if competition_id is None else competition_id
        season_id_glob = "*" if season_id is None else season_id
        game_id_glob = "*" if game_id is None else game_id
        glob_pattern = self.feeds[feed].format(
            competition_id=competition_id_glob, season_id=season_id_glob, game_id=game_id_glob
        )
        if "*" in glob_pattern:
            files = glob.glob(os.path.join(self.root, glob_pattern))
            if len(files) == 0:
                raise MissingDataError
            return files
        return [glob_pattern]

    def competitions(
        self, competition_id: Optional[int] = None
    ) -> DataFrame[WyscoutCompetitionSchema]:
        """Return a dataframe with all available competitions and seasons.

        Parameters
        ----------
        competition_id : int, optional
            The ID of the competition.

        Raises
        ------
        ParseError
            When the raw data does not adhere to the expected format.

        Returns
        -------
        pd.DataFrame
            A dataframe containing all available competitions and seasons. See
            :class:`~socceraction.spadl.wyscout.WyscoutCompetitionSchema` for the schema.
        """
        # Get all competitions
        if "competitions" in self.feeds:
            competitions_url = self._get_file_or_url("competitions")[0]
            path = os.path.join(self.root, competitions_url)
            obj = self.get(path)
            if not isinstance(obj, dict) or "competitions" not in obj:
                raise ParseError(f"{path} should contain a list of competitions")
            seasons_urls = [
                self._get_file_or_url("seasons", competition_id=c["wyId"])[0]
                for c in obj["competitions"]
            ]
        else:
            seasons_urls = self._get_file_or_url("seasons", competition_id=competition_id)
        # Get seasons in each competition
        competitions = []
        seasons = []
        for seasons_url in seasons_urls:
            try:
                path = os.path.join(self.root, seasons_url)
                obj = self.get(path)
                if not isinstance(obj, dict) or "competition" not in obj or "seasons" not in obj:
                    raise ParseError(
                        f"{path} should contain a list of competition and list of seasons"
                    )
                competitions.append(obj["competition"])
                seasons.extend([s["season"] for s in obj["seasons"]])
            except FileNotFoundError:
                warnings.warn(f"File not found: {seasons_url}")
        df_competitions = _convert_competitions(pd.DataFrame(competitions))
        df_seasons = _convert_seasons(pd.DataFrame(seasons))
        # Merge into a single dataframe
        return cast(
            DataFrame[WyscoutCompetitionSchema],
            pd.merge(df_competitions, df_seasons, on="competition_id"),
        )

    def games(self, competition_id: int, season_id: int) -> DataFrame[WyscoutGameSchema]:
        """Return a dataframe with all available games in a season.

        Parameters
        ----------
        competition_id : int
            The ID of the competition.
        season_id : int
            The ID of the season.

        Raises
        ------
        ParseError
            When the raw data does not adhere to the expected format.

        Returns
        -------
        pd.DataFrame
            A dataframe containing all available games. See
            :class:`~socceraction.spadl.wyscout.WyscoutGameSchema` for the schema.
        """
        # Get all games
        if "games" in self.feeds:
            games_url = self._get_file_or_url(
                "games", competition_id=competition_id, season_id=season_id
            )[0]
            path = os.path.join(self.root, games_url)
            obj = self.get(path)
            if not isinstance(obj, dict) or "matches" not in obj:
                raise ParseError(f"{path} should contain a list of matches")
            gamedetails_urls = [
                self._get_file_or_url(
                    "events",
                    competition_id=competition_id,
                    season_id=season_id,
                    game_id=g["matchId"],
                )[0]
                for g in obj["matches"]
            ]
        else:
            gamedetails_urls = self._get_file_or_url(
                "events", competition_id=competition_id, season_id=season_id
            )
        games = []
        for gamedetails_url in gamedetails_urls:
            try:
                path = os.path.join(self.root, gamedetails_url)
                obj = self.get(path)
                if not isinstance(obj, dict) or "match" not in obj:
                    raise ParseError(f"{path} should contain a match")
                games.append(obj["match"])
            except FileNotFoundError:
                warnings.warn(f"File not found: {gamedetails_url}")
            except HTTPError:
                warnings.warn(f"Resource not found: {gamedetails_url}")
        df_games = _convert_games(pd.DataFrame(games))
        return cast(DataFrame[WyscoutGameSchema], df_games)

    def teams(self, game_id: int) -> DataFrame[WyscoutTeamSchema]:
        """Return a dataframe with both teams that participated in a game.

        Parameters
        ----------
        game_id : int
            The ID of the game.

        Raises
        ------
        ParseError
            When the raw data does not adhere to the expected format.

        Returns
        -------
        pd.DataFrame
            A dataframe containing both teams. See
            :class:`~socceraction.spadl.wyscout.WyscoutTeamSchema` for the schema.
        """
        events_url = self._get_file_or_url("events", game_id=game_id)[0]
        path = os.path.join(self.root, events_url)
        obj = self.get(path)
        if not isinstance(obj, dict) or "teams" not in obj:
            raise ParseError(f"{path} should contain a list of matches")
        teams = [t["team"] for t in obj["teams"].values() if t.get("team")]
        df_teams = _convert_teams(pd.DataFrame(teams))
        return cast(DataFrame[WyscoutTeamSchema], df_teams)

    def players(self, game_id: int) -> DataFrame[WyscoutPlayerSchema]:
        """Return a dataframe with all players that participated in a game.

        Parameters
        ----------
        game_id : int
            The ID of the game.

        Raises
        ------
        ParseError
            When the raw data does not adhere to the expected format.

        Returns
        -------
        pd.DataFrame
            A dataframe containing all players. See
            :class:`~socceraction.spadl.wyscout.WyscoutPlayerSchema` for the schema.
        """
        events_url = self._get_file_or_url("events", game_id=game_id)[0]
        path = os.path.join(self.root, events_url)
        obj = self.get(path)
        if not isinstance(obj, dict) or "players" not in obj:
            raise ParseError(f"{path} should contain a list of players")
        players = [
            player["player"]
            for team in obj["players"].values()
            for player in team
            if player.get("player")
        ]
        df_players = _convert_players(pd.DataFrame(players).drop_duplicates("wyId"))
        df_players = pd.merge(
            df_players,
            _get_minutes_played(obj["match"]["teamsData"], obj["events"]),
            on="player_id",
            how="right",
        )
        df_players["minutes_played"] = df_players.minutes_played.fillna(0)
        df_players["game_id"] = game_id
        return cast(DataFrame[WyscoutPlayerSchema], df_players)

    def events(self, game_id: int) -> DataFrame[WyscoutEventSchema]:
        """Return a dataframe with the event stream of a game.

        Parameters
        ----------
        game_id : int
            The ID of the game.

        Raises
        ------
        ParseError
            When the raw data does not adhere to the expected format.

        Returns
        -------
        pd.DataFrame
            A dataframe containing the event stream. See
            :class:`~socceraction.spadl.wyscout.WyscoutEventSchema` for the schema.
        """
        events_url = self._get_file_or_url("events", game_id=game_id)[0]
        path = os.path.join(self.root, events_url)
        obj = self.get(path)
        if not isinstance(obj, dict) or "events" not in obj:
            raise ParseError(f"{path} should contain a list of events")
        df_events = _convert_events(pd.DataFrame(obj["events"]))
        return cast(DataFrame[WyscoutEventSchema], df_events)


def _convert_competitions(competitions: pd.DataFrame) -> pd.DataFrame:
    competitionsmapping = {
        "wyId": "competition_id",
        "name": "competition_name",
        "gender": "competition_gender",
    }
    cols = ["competition_id", "competition_name", "country_name", "competition_gender"]
    competitions["country_name"] = competitions.apply(
        lambda x: x.area["name"] if x.area["name"] != "" else "International", axis=1
    )
    competitions = competitions.rename(columns=competitionsmapping)[cols]
    return competitions


def _convert_seasons(seasons: pd.DataFrame) -> pd.DataFrame:
    seasonsmapping = {
        "wyId": "season_id",
        "name": "season_name",
        "competitionId": "competition_id",
    }
    cols = ["season_id", "season_name", "competition_id"]
    seasons = seasons.rename(columns=seasonsmapping)[cols]
    return seasons


def _convert_games(matches: pd.DataFrame) -> pd.DataFrame:
    gamesmapping = {
        "wyId": "game_id",
        "dateutc": "game_date",
        "competitionId": "competition_id",
        "seasonId": "season_id",
        "gameweek": "game_day",
    }
    cols = ["game_id", "competition_id", "season_id", "game_date", "game_day"]
    games = matches.rename(columns=gamesmapping)[cols]
    games["game_date"] = pd.to_datetime(games["game_date"])
    games["home_team_id"] = matches.teamsData.apply(lambda x: _get_team_id(x, "home"))
    games["away_team_id"] = matches.teamsData.apply(lambda x: _get_team_id(x, "away"))
    return games


def _get_team_id(teamsData: dict[int, Any], side: str) -> int:
    for team_id, data in teamsData.items():
        if data["side"] == side:
            return int(team_id)
    raise ValueError()


def _convert_players(players: pd.DataFrame) -> pd.DataFrame:
    playermapping = {
        "wyId": "player_id",
        "shortName": "nickname",
        "firstName": "firstname",
        "lastName": "lastname",
        "birthDate": "birth_date",
    }
    cols = ["player_id", "nickname", "firstname", "lastname", "birth_date"]
    df_players = players.rename(columns=playermapping)[cols]
    df_players["player_name"] = df_players[["firstname", "lastname"]].agg(" ".join, axis=1)
    df_players["birth_date"] = pd.to_datetime(df_players["birth_date"])
    return df_players


def _convert_teams(teams: pd.DataFrame) -> pd.DataFrame:
    teammapping = {
        "wyId": "team_id",
        "name": "team_name_short",
        "officialName": "team_name",
    }
    cols = ["team_id", "team_name_short", "team_name"]
    return teams.rename(columns=teammapping)[cols]


def _convert_events(raw_events: pd.DataFrame) -> pd.DataFrame:
    eventmapping = {
        "id": "event_id",
        "match_id": "game_id",
        "event_name": "type_name",
        "sub_event_name": "subtype_name",
    }
    cols = [
        "event_id",
        "game_id",
        "period_id",
        "milliseconds",
        "team_id",
        "player_id",
        "type_id",
        "type_name",
        "subtype_id",
        "subtype_name",
        "positions",
        "tags",
    ]
    events = raw_events.copy()
    # Camel case to snake case column names
    pattern = re.compile(r"(?<!^)(?=[A-Z])")
    events.columns = [pattern.sub("_", c).lower() for c in events.columns]
    #
    events["type_id"] = (
        pd.to_numeric(
            events["event_id"] if "event_id" in events.columns else None, errors="coerce"
        )
        .fillna(0)
        .astype(int)
    )
    del events["event_id"]
    events["subtype_id"] = (
        pd.to_numeric(
            events["sub_event_id"] if "sub_event_id" in events.columns else None, errors="coerce"
        )
        .fillna(0)
        .astype(int)
    )
    del events["sub_event_id"]
    events["period_id"] = events.match_period.apply(lambda x: wyscout_periods[x])
    events["milliseconds"] = events.event_sec * 1000
    return events.rename(columns=eventmapping)[cols]


def _get_minutes_played(
    teamsData: list[dict[str, Any]], events: list[dict[str, Any]]
) -> pd.DataFrame:
    # get duration of each period
    periods_ts = {i: [0] for i in range(6)}
    for e in events:
        period_id = wyscout_periods[e["matchPeriod"]]
        periods_ts[period_id].append(e["eventSec"])
    periods_duration = [
        round(max(periods_ts[i]) / 60) for i in range(5) if max(periods_ts[i]) != 0
    ]
    # get duration of entire match
    duration = sum(periods_duration)

    # get stats for each player
    playergames: dict[int, dict[str, Any]] = {}
    if isinstance(teamsData, dict):
        teamsData = list(teamsData.values())
    for teamData in teamsData:
        formation = teamData.get("formation", {})
        substitutions = formation.get("substitutions", [])
        red_cards = {
            player["playerId"]: _expand_minute(int(player["redCards"]), periods_duration)
            for key in ["bench", "lineup"]
            for player in formation.get(key, [])
            if player["redCards"] != "0"
        }
        pg = {
            player["playerId"]: {
                "team_id": teamData["teamId"],
                "player_id": player["playerId"],
                "jersey_number": player.get("shirtNumber", 0),
                "minutes_played": red_cards.get(player["playerId"], duration),
                "is_starter": True,
            }
            for player in formation.get("lineup", [])
        }

        # correct minutes played for substituted players
        if substitutions != "null":
            for substitution in substitutions:
                expanded_minute_sub = _expand_minute(substitution["minute"], periods_duration)
                substitute = {
                    "team_id": teamData["teamId"],
                    "player_id": substitution["playerIn"],
                    "jersey_number": next(
                        (
                            p.get("shirtNumber", 0)
                            for p in formation.get("bench", [])
                            if p["playerId"] == substitution["playerIn"]
                        ),
                        0,
                    ),
                    "minutes_played": duration - expanded_minute_sub,
                    "is_starter": False,
                }
                if substitution["playerIn"] in red_cards:
                    substitute["minutes_played"] = (
                        red_cards[substitution["playerIn"]] - expanded_minute_sub
                    )
                pg[substitution["playerIn"]] = substitute
                pg[substitution["playerOut"]]["minutes_played"] = expanded_minute_sub

        playergames = {**playergames, **pg}
    return pd.DataFrame(playergames.values())


wyscout_periods = {"1H": 1, "2H": 2, "E1": 3, "E2": 4, "P": 5}