File size: 15,844 Bytes
d6ea71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
"""StatsBomb event stream data to SPADL converter."""
import warnings
from typing import Any, Optional, cast
import numpy as np
import numpy.typing as npt
import pandas as pd # type: ignore
from pandera.typing import DataFrame
from . import config as spadlconfig
from .base import _add_dribbles, _fix_clearances, _fix_direction_of_play
from .schema import SPADLSchema
def convert_to_actions(
events: pd.DataFrame,
home_team_id: int,
xy_fidelity_version: Optional[int] = None,
shot_fidelity_version: Optional[int] = None,
) -> DataFrame[SPADLSchema]:
"""
Convert StatsBomb events to SPADL actions.
Parameters
----------
events : pd.DataFrame
DataFrame containing StatsBomb events from a single game.
home_team_id : int
ID of the home team in the corresponding game.
xy_fidelity_version : int, optional
Whether low or high fidelity coordinates are used in the event data.
If not specified, the fidelity version is inferred from the data.
shot_fidelity_version : int, optional
Whether low or high fidelity coordinates are used in the event data
for shots. If not specified, the fidelity version is inferred from the
data.
Returns
-------
actions : pd.DataFrame
DataFrame with corresponding SPADL actions.
"""
actions = pd.DataFrame()
# Determine xy_fidelity_version and shot_fidelity_version
infered_xy_fidelity_version, infered_shot_fidelity_version = _infer_xy_fidelity_versions(
events
)
if xy_fidelity_version is None:
xy_fidelity_version = infered_xy_fidelity_version
warnings.warn(
f"Inferred xy_fidelity_version={infered_xy_fidelity_version}."
+ " If this is incorrect, please specify the correct version"
+ " using the xy_fidelity_version argument"
)
else:
assert xy_fidelity_version in [1, 2], "xy_fidelity_version must be 1 or 2"
if shot_fidelity_version is None:
if xy_fidelity_version == 2:
shot_fidelity_version = 2
else:
shot_fidelity_version = infered_shot_fidelity_version
warnings.warn(
f"Inferred shot_fidelity_version={infered_shot_fidelity_version}."
+ " If this is incorrect, please specify the correct version"
+ " using the shot_fidelity_version argument"
)
else:
assert shot_fidelity_version in [1, 2], "shot_fidelity_version must be 1 or 2"
events = events.copy()
events = _insert_interception_passes(events)
events["extra"].fillna({}, inplace=True)
actions["game_id"] = events.game_id
actions["original_event_id"] = events.event_id
actions["period_id"] = events.period_id
actions["time_seconds"] = pd.to_timedelta(events.timestamp).dt.total_seconds()
actions["team_id"] = events.team_id
actions["player_id"] = events.player_id
# split (end)location column into x and y columns
end_location = events[["location", "extra"]].apply(_get_end_location, axis=1)
# convert StatsBomb coordinates to spadl coordinates
actions.loc[events.type_name == "Shot", ["start_x", "start_y"]] = _convert_locations(
events.loc[events.type_name == "Shot", "location"],
shot_fidelity_version,
)
actions.loc[events.type_name != "Shot", ["start_x", "start_y"]] = _convert_locations(
events.loc[events.type_name != "Shot", "location"],
shot_fidelity_version,
)
actions.loc[events.type_name == "Shot", ["end_x", "end_y"]] = _convert_locations(
end_location.loc[events.type_name == "Shot"],
shot_fidelity_version,
)
actions.loc[events.type_name != "Shot", ["end_x", "end_y"]] = _convert_locations(
end_location.loc[events.type_name != "Shot"],
shot_fidelity_version,
)
actions[["type_id", "result_id", "bodypart_id"]] = events[["type_name", "extra"]].apply(
_parse_event, axis=1, result_type="expand"
)
actions = (
actions[actions.type_id != spadlconfig.actiontypes.index("non_action")]
.sort_values(["game_id", "period_id", "time_seconds"], kind="mergesort")
.reset_index(drop=True)
)
actions = _fix_direction_of_play(actions, home_team_id)
actions = _fix_clearances(actions)
actions["action_id"] = range(len(actions))
actions = _add_dribbles(actions)
return cast(DataFrame[SPADLSchema], actions)
Location = tuple[float, float]
def _insert_interception_passes(df_events: pd.DataFrame) -> pd.DataFrame:
"""Insert interception actions before passes.
This function converts passes that are also interceptions (type 64) in the
StatsBomb event data into two separate events, first an interception and
then a pass.
Parameters
----------
df_events : pd.DataFrame
StatsBomb event dataframe
Returns
-------
pd.DataFrame
StatsBomb event dataframe in which passes that were also denoted as
interceptions in the StatsBomb notation are transformed into two events.
"""
def is_interception_pass(x: dict) -> bool: # type: ignore
return x.get("extra", {}).get("pass", {}).get("type", {}).get("name") == "Interception"
df_events_interceptions = df_events[df_events.apply(is_interception_pass, axis=1)].copy()
if not df_events_interceptions.empty:
df_events_interceptions["type_name"] = "Interception"
df_events_interceptions["extra"] = [
{"interception": {"outcome": {"id": 16, "name": "Success In Play"}}}
] * len(df_events_interceptions)
df_events = pd.concat([df_events_interceptions, df_events], ignore_index=True)
df_events = df_events.sort_values(["timestamp"], kind="mergesort")
df_events = df_events.reset_index(drop=True)
return df_events
def _infer_xy_fidelity_versions(events: pd.DataFrame) -> tuple[int, int]:
"""Find out if x and y are integers disguised as floats."""
mask_shot = events.type_name == "Shot"
mask_other = events.type_name != "Shot"
locations = events.location.apply(pd.Series)
mask_valid_location = locations.notna().any(axis=1)
high_fidelity_shots = (locations.loc[mask_valid_location & mask_shot] % 1 != 0).any(axis=None)
high_fidelity_other = (locations.loc[mask_valid_location & mask_other] % 1 != 0).any(axis=None)
xy_fidelity_version = 2 if high_fidelity_other else 1
shot_fidelity_version = 2 if high_fidelity_shots else xy_fidelity_version
return shot_fidelity_version, xy_fidelity_version
def _convert_locations(locations: pd.Series, fidelity_version: int) -> npt.NDArray[np.float32]:
"""Convert StatsBomb locations to spadl coordinates.
StatsBomb coordinates are cell-based, using a 120x80 grid, so 1,1 is the
top-left square 'yard' of the field (in landscape), even though 0,0 is the
true coordinate of the corner flag.
Some matches have metadata like "xy_fidelity_version" : "2", which means
the grid has higher granularity. In this case 0.1,0.1 is the top left
cell.
"""
# [1, 120] x [1, 80]
# +-----+------+
# | 1,1 | 2, 1 |
# +-----+------+
# | 1,2 | 2,2 |
# +-----+------+
cell_side = 0.1 if fidelity_version == 2 else 1.0
cell_relative_center = cell_side / 2
coordinates = np.empty((len(locations), 2), dtype=float)
for i, loc in enumerate(locations):
if isinstance(loc, list) and len(loc) == 2:
coordinates[i, 0] = (loc[0] - cell_relative_center) / 120 * spadlconfig.field_length
coordinates[i, 1] = (
spadlconfig.field_width
- (loc[1] - cell_relative_center) / 80 * spadlconfig.field_width
)
elif isinstance(loc, list) and len(loc) == 3:
# A coordinate in the goal frame, only used for the end location of
# Shot events. The y-coordinates and z-coordinates are always detailed
# to a tenth of a yard.
coordinates[i, 0] = (loc[0] - cell_relative_center) / 120 * spadlconfig.field_length
coordinates[i, 1] = (
spadlconfig.field_width - (loc[1] - 0.05) / 80 * spadlconfig.field_width
)
coordinates[:, 0] = np.clip(coordinates[:, 0], 0, spadlconfig.field_length)
coordinates[:, 1] = np.clip(coordinates[:, 1], 0, spadlconfig.field_width)
return coordinates
def _get_end_location(q: tuple[Location, dict[str, Any]]) -> Location:
start_location, extra = q
for event in ["pass", "shot", "carry"]:
if event in extra and "end_location" in extra[event]:
return extra[event]["end_location"]
return start_location
def _parse_event(q: tuple[str, dict[str, Any]]) -> tuple[int, int, int]:
t, x = q
events = {
"Pass": _parse_pass_event,
"Dribble": _parse_dribble_event,
"Carry": _parse_carry_event,
"Foul Committed": _parse_foul_event,
"Duel": _parse_duel_event,
"Interception": _parse_interception_event,
"Shot": _parse_shot_event,
"Own Goal Against": _parse_own_goal_event,
"Goal Keeper": _parse_goalkeeper_event,
"Clearance": _parse_clearance_event,
"Miscontrol": _parse_miscontrol_event,
}
parser = events.get(t, _parse_event_as_non_action)
a, r, b = parser(x)
actiontype = spadlconfig.actiontypes.index(a)
result = spadlconfig.results.index(r)
bodypart = spadlconfig.bodyparts.index(b)
return actiontype, result, bodypart
def _parse_event_as_non_action(_extra: dict[str, Any]) -> tuple[str, str, str]:
a = "non_action"
r = "success"
b = "foot"
return a, r, b
def _parse_pass_event(extra: dict[str, Any]) -> tuple[str, str, str]: # noqa: C901
a = "pass" # default
b = "foot" # default
p = extra.get("pass", {})
ptype = p.get("type", {}).get("name")
height = p.get("height", {}).get("name")
cross = p.get("cross")
if ptype == "Free Kick":
if height == "High Pass" or cross:
a = "freekick_crossed"
else:
a = "freekick_short"
elif ptype == "Corner":
if height == "High Pass" or cross:
a = "corner_crossed"
else:
a = "corner_short"
elif ptype == "Goal Kick":
a = "goalkick"
elif ptype == "Throw-in":
a = "throw_in"
b = "other"
elif cross:
a = "cross"
else:
a = "pass"
pass_outcome = extra.get("pass", {}).get("outcome", {}).get("name")
if pass_outcome in ["Incomplete", "Out"]:
r = "fail"
elif pass_outcome == "Pass Offside":
r = "offside"
elif pass_outcome in ["Injury Clearance", "Unknown"]:
# discard passes that are not part of the play
a = "non_action"
r = "success"
else:
r = "success"
bp = extra.get("pass", {}).get("body_part", {}).get("name")
if bp is not None:
if "Head" in bp:
b = "head"
elif bp == "Left Foot":
b = "foot_left"
elif bp == "Right Foot":
b = "foot_right"
elif "Foot" in bp or bp == "Drop Kick":
b = "foot"
else:
b = "other"
return a, r, b
def _parse_dribble_event(extra: dict[str, Any]) -> tuple[str, str, str]:
a = "take_on"
dribble_outcome = extra.get("dribble", {}).get("outcome", {}).get("name")
if dribble_outcome == "Incomplete":
r = "fail"
elif dribble_outcome == "Complete":
r = "success"
else:
r = "success"
b = "foot"
return a, r, b
def _parse_carry_event(_extra: dict[str, Any]) -> tuple[str, str, str]:
a = "dribble"
r = "success"
b = "foot"
return a, r, b
def _parse_foul_event(extra: dict[str, Any]) -> tuple[str, str, str]:
a = "foul"
foul_card = extra.get("foul_committed", {}).get("card", {}).get("name", "")
if "Yellow" in foul_card:
r = "yellow_card"
elif "Red" in foul_card:
r = "red_card"
else:
r = "fail"
b = "foot"
return a, r, b
def _parse_duel_event(extra: dict[str, Any]) -> tuple[str, str, str]:
if extra.get("duel", {}).get("type", {}).get("name") == "Tackle":
a = "tackle"
duel_outcome = extra.get("duel", {}).get("outcome", {}).get("name")
if duel_outcome in ["Lost In Play", "Lost Out"]:
r = "fail"
elif duel_outcome in ["Success in Play", "Won"]:
r = "success"
else:
r = "success"
b = "foot"
return a, r, b
return _parse_event_as_non_action(extra)
def _parse_interception_event(extra: dict[str, Any]) -> tuple[str, str, str]:
a = "interception"
interception_outcome = extra.get("interception", {}).get("outcome", {}).get("name")
if interception_outcome in ["Lost In Play", "Lost Out"]:
r = "fail"
elif interception_outcome == "Won":
r = "success"
else:
r = "success"
b = "foot"
return a, r, b
def _parse_shot_event(extra: dict[str, Any]) -> tuple[str, str, str]:
extra_type = extra.get("shot", {}).get("type", {}).get("name")
if extra_type == "Free Kick":
a = "shot_freekick"
elif extra_type == "Penalty":
a = "shot_penalty"
else:
a = "shot"
shot_outcome = extra.get("shot", {}).get("outcome", {}).get("name")
if shot_outcome == "Goal":
r = "success"
elif shot_outcome in ["Blocked", "Off T", "Post", "Saved", "Wayward"]:
r = "fail"
else:
r = "fail"
bp = extra.get("shot", {}).get("body_part", {}).get("name")
if bp is None:
b = "foot"
elif "Head" in bp:
b = "head"
elif bp == "Left Foot":
b = "foot_left"
elif bp == "Right Foot":
b = "foot_right"
elif "Foot" in bp:
b = "foot"
else:
b = "other"
return a, r, b
def _parse_own_goal_event(_extra: dict[str, Any]) -> tuple[str, str, str]:
a = "bad_touch"
r = "owngoal"
b = "foot"
return a, r, b
def _parse_goalkeeper_event(extra: dict[str, Any]) -> tuple[str, str, str]: # noqa: C901
extra_type = extra.get("goalkeeper", {}).get("type", {}).get("name")
if extra_type == "Shot Saved":
a = "keeper_save"
elif extra_type in ("Collected", "Keeper Sweeper"):
a = "keeper_claim"
elif extra_type == "Punch":
a = "keeper_punch"
else:
a = "non_action"
goalkeeper_outcome = extra.get("goalkeeper", {}).get("outcome", {}).get("name", "x")
if goalkeeper_outcome in [
"Claim",
"Clear",
"Collected Twice",
"In Play Safe",
"Success",
"Touched Out",
]:
r = "success"
elif goalkeeper_outcome in ["In Play Danger", "No Touch"]:
r = "fail"
else:
r = "success"
bp = extra.get("goalkeeper", {}).get("body_part", {}).get("name")
if bp is None:
b = "other"
elif "Head" in bp:
b = "head"
elif bp == "Left Foot":
b = "foot_left"
elif bp == "Right Foot":
b = "foot_right"
elif "Foot" in bp or bp == "Drop Kick":
b = "foot"
else:
b = "other"
return a, r, b
def _parse_clearance_event(extra: dict[str, Any]) -> tuple[str, str, str]:
a = "clearance"
r = "success"
bp = extra.get("clearance", {}).get("body_part", {}).get("name")
if bp is None:
b = "foot"
elif "Head" in bp:
b = "head"
elif bp == "Left Foot":
b = "foot_left"
elif bp == "Right Foot":
b = "foot_right"
elif "Foot" in bp:
b = "foot"
else:
b = "other"
return a, r, b
def _parse_miscontrol_event(_extra: dict[str, Any]) -> tuple[str, str, str]:
a = "bad_touch"
r = "fail"
b = "foot"
return a, r, b
|