File size: 31,156 Bytes
d6ea71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
"""Wyscout event stream data to SPADL converter."""

from typing import Any, Optional, cast

import pandas as pd  # type: ignore
from pandera.typing import DataFrame

from . import config as spadlconfig
from .base import (
    _add_dribbles,
    _fix_clearances,
    _fix_direction_of_play,
    min_dribble_length,
)
from .schema import SPADLSchema

###################################
# WARNING: HERE BE DRAGONS
# This code for converting wyscout data was organically grown over a long period of time.
# It works for now, but needs to be cleaned up in the future.
# Enter at your own risk.
###################################


def convert_to_actions(events: pd.DataFrame, home_team_id: int) -> DataFrame[SPADLSchema]:
    """

    Convert Wyscout events to SPADL actions.



    Parameters

    ----------

    events : pd.DataFrame

        DataFrame containing Wyscout events from a single game.

    home_team_id : int

        ID of the home team in the corresponding game.



    Returns

    -------

    actions : pd.DataFrame

        DataFrame with corresponding SPADL actions.



    """
    events = pd.concat([events, get_tagsdf(events)], axis=1)
    events = make_new_positions(events)
    events = fix_wyscout_events(events)
    actions = create_df_actions(events)
    actions = fix_actions(actions)
    actions = _fix_direction_of_play(actions, home_team_id)
    actions = _fix_clearances(actions)
    actions["action_id"] = range(len(actions))
    actions = _add_dribbles(actions)

    return cast(DataFrame[SPADLSchema], actions)


def _get_tag_set(tags: list[dict[str, Any]]) -> set[int]:
    return {tag["id"] for tag in tags}


def get_tagsdf(events: pd.DataFrame) -> pd.DataFrame:
    """Represent Wyscout tags as a boolean dataframe.



    Parameters

    ----------

    events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        A dataframe with a column for each tag.

    """
    tags = events.tags.apply(_get_tag_set)
    tagsdf = pd.DataFrame()
    for tag_id, column in wyscout_tags:
        tagsdf[column] = tags.apply(lambda x, tag=tag_id: tag in x)
    return tagsdf


wyscout_tags = [
    (101, "goal"),
    (102, "own_goal"),
    (301, "assist"),
    (302, "key_pass"),
    (1901, "counter_attack"),
    (401, "left_foot"),
    (402, "right_foot"),
    (403, "head/body"),
    (1101, "direct"),
    (1102, "indirect"),
    (2001, "dangerous_ball_lost"),
    (2101, "blocked"),
    (801, "high"),
    (802, "low"),
    (1401, "interception"),
    (1501, "clearance"),
    (201, "opportunity"),
    (1301, "feint"),
    (1302, "missed_ball"),
    (501, "free_space_right"),
    (502, "free_space_left"),
    (503, "take_on_left"),
    (504, "take_on_right"),
    (1601, "sliding_tackle"),
    (601, "anticipated"),
    (602, "anticipation"),
    (1701, "red_card"),
    (1702, "yellow_card"),
    (1703, "second_yellow_card"),
    (1201, "position_goal_low_center"),
    (1202, "position_goal_low_right"),
    (1203, "position_goal_mid_center"),
    (1204, "position_goal_mid_left"),
    (1205, "position_goal_low_left"),
    (1206, "position_goal_mid_right"),
    (1207, "position_goal_high_center"),
    (1208, "position_goal_high_left"),
    (1209, "position_goal_high_right"),
    (1210, "position_out_low_right"),
    (1211, "position_out_mid_left"),
    (1212, "position_out_low_left"),
    (1213, "position_out_mid_right"),
    (1214, "position_out_high_center"),
    (1215, "position_out_high_left"),
    (1216, "position_out_high_right"),
    (1217, "position_post_low_right"),
    (1218, "position_post_mid_left"),
    (1219, "position_post_low_left"),
    (1220, "position_post_mid_right"),
    (1221, "position_post_high_center"),
    (1222, "position_post_high_left"),
    (1223, "position_post_high_right"),
    (901, "through"),
    (1001, "fairplay"),
    (701, "lost"),
    (702, "neutral"),
    (703, "won"),
    (1801, "accurate"),
    (1802, "not_accurate"),
]


def _make_position_vars(event_id: int, positions: list[dict[str, Optional[float]]]) -> pd.Series:
    if len(positions) == 2:  # if less than 2 then action is removed
        start_x = positions[0]["x"]
        start_y = positions[0]["y"]
        end_x = positions[1]["x"]
        end_y = positions[1]["y"]
    elif len(positions) == 1:
        start_x = positions[0]["x"]
        start_y = positions[0]["y"]
        end_x = start_x
        end_y = start_y
    else:
        start_x = None
        start_y = None
        end_x = None
        end_y = None
    return pd.Series([event_id, start_x, start_y, end_x, end_y])


def make_new_positions(events: pd.DataFrame) -> pd.DataFrame:
    """Extract the start and end coordinates for each action.



    Parameters

    ----------

    events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        Wyscout event dataframe with start and end coordinates for each action.

    """
    new_positions = events[["event_id", "positions"]].apply(
        lambda row: _make_position_vars(row["event_id"], row["positions"]), axis=1
    )
    new_positions.columns = ["event_id", "start_x", "start_y", "end_x", "end_y"]
    events = pd.merge(events, new_positions, left_on="event_id", right_on="event_id")
    events[["start_x", "end_x"]] = events[["start_x", "end_x"]].astype(float)
    events[["start_y", "end_y"]] = events[["start_y", "end_y"]].astype(float)
    events = events.drop("positions", axis=1)
    return events


def fix_wyscout_events(df_events: pd.DataFrame) -> pd.DataFrame:
    """Perform some fixes on the Wyscout events such that the spadl action dataframe can be built.



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        Wyscout event dataframe with an extra column 'offside'

    """
    df_events = create_shot_coordinates(df_events)
    df_events = convert_duels(df_events)
    df_events = insert_interceptions(df_events)
    df_events = add_offside_variable(df_events)
    df_events = convert_touches(df_events)
    df_events = convert_simulations(df_events)
    return df_events


def create_shot_coordinates(df_events: pd.DataFrame) -> pd.DataFrame:
    """Create shot coordinates (estimates) from the Wyscout tags.



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        Wyscout event dataframe with end coordinates for shots

    """
    shot = df_events.subtype_id.isin([33, 100])
    pas = df_events.type_id == 8

    goal_center_idx = (
        df_events["position_goal_low_center"]
        | df_events["position_goal_mid_center"]
        | df_events["position_goal_high_center"]
    )
    df_events.loc[shot & goal_center_idx, "end_x"] = 100.0
    df_events.loc[shot & goal_center_idx, "end_y"] = 50.0

    goal_right_idx = (
        df_events["position_goal_low_right"]
        | df_events["position_goal_mid_right"]
        | df_events["position_goal_high_right"]
    )
    df_events.loc[shot & goal_right_idx, "end_x"] = 100.0
    df_events.loc[shot & goal_right_idx, "end_y"] = 55.0

    goal_left_idx = (
        df_events["position_goal_mid_left"]
        | df_events["position_goal_low_left"]
        | df_events["position_goal_high_left"]
    )
    df_events.loc[shot & goal_left_idx, "end_x"] = 100.0
    df_events.loc[shot & goal_left_idx, "end_y"] = 45.0

    out_center_idx = df_events["position_out_high_center"] | df_events["position_post_high_center"]
    df_events.loc[shot & out_center_idx, "end_x"] = 100.0
    df_events.loc[shot & out_center_idx, "end_y"] = 50.0

    out_right_idx = (
        df_events["position_out_low_right"]
        | df_events["position_out_mid_right"]
        | df_events["position_out_high_right"]
    )
    df_events.loc[shot & out_right_idx, "end_x"] = 100.0
    df_events.loc[shot & out_right_idx, "end_y"] = 60.0

    out_left_idx = (
        df_events["position_out_mid_left"]
        | df_events["position_out_low_left"]
        | df_events["position_out_high_left"]
    )
    df_events.loc[shot & out_left_idx, "end_x"] = 100.0
    df_events.loc[shot & out_left_idx, "end_y"] = 40.0

    post_left_idx = (
        df_events["position_post_mid_left"]
        | df_events["position_post_low_left"]
        | df_events["position_post_high_left"]
    )
    df_events.loc[shot & post_left_idx, "end_x"] = 100.0
    df_events.loc[shot & post_left_idx, "end_y"] = 55.38

    post_right_idx = (
        df_events["position_post_low_right"]
        | df_events["position_post_mid_right"]
        | df_events["position_post_high_right"]
    )
    df_events.loc[shot & post_right_idx, "end_x"] = 100.0
    df_events.loc[shot & post_right_idx, "end_y"] = 44.62

    blocked_idx = df_events["blocked"]
    df_events.loc[(shot | pas) & blocked_idx, "end_x"] = df_events.loc[blocked_idx, "start_x"]
    df_events.loc[(shot | pas) & blocked_idx, "end_y"] = df_events.loc[blocked_idx, "start_y"]

    return df_events


def convert_duels(df_events: pd.DataFrame) -> pd.DataFrame:
    """Convert duel events.



    This function converts Wyscout duels that end with the ball out of field

    (subtype_id 50) into a pass for the player winning the duel to the location

    of where the ball went out of field. The remaining duels are removed as

    they are not on-the-ball actions.



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        Wyscout event dataframe in which the duels are either removed or

        transformed into a pass

    """
    # Shift events dataframe by one and two time steps
    df_events1 = df_events.shift(-1)
    df_events2 = df_events.shift(-2)

    # Define selector for same period id
    selector_same_period = df_events["period_id"] == df_events2["period_id"]

    # Define selector for duels that are followed by an 'out of field' event
    selector_duel_out_of_field = (
        (df_events["type_id"] == 1)
        & (df_events1["type_id"] == 1)
        & (df_events2["subtype_id"] == 50)
        & selector_same_period
    )

    # Define selectors for current time step
    selector0_duel_won = selector_duel_out_of_field & (
        df_events["team_id"] != df_events2["team_id"]
    )
    selector0_duel_won_air = selector0_duel_won & (df_events["subtype_id"] == 10)
    selector0_duel_won_not_air = selector0_duel_won & (df_events["subtype_id"] != 10)

    # Define selectors for next time step
    selector1_duel_won = selector_duel_out_of_field & (
        df_events1["team_id"] != df_events2["team_id"]
    )
    selector1_duel_won_air = selector1_duel_won & (df_events1["subtype_id"] == 10)
    selector1_duel_won_not_air = selector1_duel_won & (df_events1["subtype_id"] != 10)

    # Aggregate selectors
    selector_duel_won = selector0_duel_won | selector1_duel_won
    selector_duel_won_air = selector0_duel_won_air | selector1_duel_won_air
    selector_duel_won_not_air = selector0_duel_won_not_air | selector1_duel_won_not_air

    # Set types and subtypes
    df_events.loc[selector_duel_won, "type_id"] = 8
    df_events.loc[selector_duel_won_air, "subtype_id"] = 82
    df_events.loc[selector_duel_won_not_air, "subtype_id"] = 85

    # set end location equal to ball out of field location
    df_events.loc[selector_duel_won, "accurate"] = False
    df_events.loc[selector_duel_won, "not_accurate"] = True
    df_events.loc[selector_duel_won, "end_x"] = 100 - df_events2.loc[selector_duel_won, "start_x"]
    df_events.loc[selector_duel_won, "end_y"] = 100 - df_events2.loc[selector_duel_won, "start_y"]

    # df_events.loc[selector_duel_won, 'end_x'] = df_events2.loc[selector_duel_won, 'start_x']
    # df_events.loc[selector_duel_won, 'end_y'] = df_events2.loc[selector_duel_won, 'start_y']

    # Define selector for ground attacking duels with take on
    selector_attacking_duel = df_events["subtype_id"] == 11
    selector_take_on = (df_events["take_on_left"]) | (df_events["take_on_right"])
    selector_att_duel_take_on = selector_attacking_duel & selector_take_on

    # Set take ons type to 0
    df_events.loc[selector_att_duel_take_on, "type_id"] = 0

    # Set sliding tackles type to 0
    df_events.loc[df_events["sliding_tackle"], "type_id"] = 0

    # Remove the remaining duels
    df_events = df_events[df_events["type_id"] != 1]

    # Reset the index
    df_events = df_events.reset_index(drop=True)

    return df_events


def insert_interceptions(df_events: pd.DataFrame) -> pd.DataFrame:
    """Insert interception actions before passes, clearances and dribbles.



    This function converts passes (type_id 8), clearances (subtype_id 71) and

    accelerations (subtype_id 70) that are also interceptions (tag

    interception) in the Wyscout event data into two separate events, first an

    interception and then a pass/clearance/dribble.



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        Wyscout event dataframe in which passes that were also denoted as

        interceptions in the Wyscout notation are transformed into two events

    """
    df_events_interceptions = df_events[
        df_events["interception"]
        & (
            (df_events["type_id"] == 8)
            | (df_events["subtype_id"] == 70)
            | (df_events["subtype_id"] == 71)
        )
    ].copy()

    if not df_events_interceptions.empty:
        df_events_interceptions.loc[:, [t[1] for t in wyscout_tags]] = False
        df_events_interceptions["interception"] = True
        df_events_interceptions["type_id"] = 0
        df_events_interceptions["subtype_id"] = 0
        df_events_interceptions[["end_x", "end_y"]] = df_events_interceptions[
            ["start_x", "start_y"]
        ]

        df_events = pd.concat([df_events_interceptions, df_events], ignore_index=True)
        df_events = df_events.sort_values(["period_id", "milliseconds"], kind="mergesort")
        df_events = df_events.reset_index(drop=True)

    return df_events


def add_offside_variable(df_events: pd.DataFrame) -> pd.DataFrame:
    """Attach offside events to the previous action.



    This function removes the offside events in the Wyscout event data and adds

    sets offside to 1 for the previous event (if this was a passing event)



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        Wyscout event dataframe with an extra column 'offside'

    """
    # Create a new column for the offside variable
    df_events["offside"] = 0

    # Shift events dataframe by one timestep
    df_events1 = df_events.shift(-1)

    # Select offside passes
    selector_offside = (df_events1["type_id"] == 6) & (df_events["type_id"] == 8)

    # Set variable 'offside' to 1 for all offside passes
    df_events.loc[selector_offside, "offside"] = 1

    # Remove offside events
    df_events = df_events[df_events["type_id"] != 6]

    # Reset index
    df_events = df_events.reset_index(drop=True)

    return df_events


def convert_simulations(df_events: pd.DataFrame) -> pd.DataFrame:
    """Convert simulations to failed take-ons.



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe





    Returns

    -------

        pd.DataFrame

        Wyscout event dataframe in which simulation events are either

        transformed into a failed take-on

    """
    prev_events = df_events.shift(1)

    # Select simulations
    selector_simulation = df_events["subtype_id"] == 25

    # Select actions preceded by a failed take-on
    selector_previous_is_failed_take_on = (
        (prev_events["take_on_left"])
        | (prev_events["take_on_right"]) & prev_events["not_accurate"]
    )

    # Transform simulations not preceded by a failed take-on to a failed take-on
    df_events.loc[selector_simulation & ~selector_previous_is_failed_take_on, "type_id"] = 0
    df_events.loc[selector_simulation & ~selector_previous_is_failed_take_on, "subtype_id"] = 0
    df_events.loc[selector_simulation & ~selector_previous_is_failed_take_on, "accurate"] = False
    df_events.loc[selector_simulation & ~selector_previous_is_failed_take_on, "not_accurate"] = (
        True
    )
    # Set take_on_left or take_on_right to True
    df_events.loc[selector_simulation & ~selector_previous_is_failed_take_on, "take_on_left"] = (
        True
    )

    # Remove simulation events which are preceded by a failed take-on
    df_events = df_events[~(selector_simulation & selector_previous_is_failed_take_on)]

    # Reset index
    df_events = df_events.reset_index(drop=True)

    return df_events


def convert_touches(df_events: pd.DataFrame) -> pd.DataFrame:
    """Convert touch events to dribbles or passes.



    This function converts the Wyscout 'touch' event (sub_type_id 72) into either

    a dribble or a pass (accurate or not depending on receiver)



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        Wyscout event dataframe without any touch events

    """
    df_events1 = df_events.shift(-1)

    selector_touch = (
        (df_events["subtype_id"] == 72) & ~df_events["interception"] & ~df_events["missed_ball"]
    )

    selector_same_player = df_events["player_id"] == df_events1["player_id"]
    selector_same_team = df_events["team_id"] == df_events1["team_id"]

    # selector_touch_same_player = selector_touch & selector_same_player
    selector_touch_same_team = selector_touch & ~selector_same_player & selector_same_team
    selector_touch_other = selector_touch & ~selector_same_player & ~selector_same_team

    same_x = abs(df_events["end_x"] - df_events1["start_x"]) < min_dribble_length
    same_y = abs(df_events["end_y"] - df_events1["start_y"]) < min_dribble_length
    same_loc = same_x & same_y

    # df_events.loc[selector_touch_same_player & same_loc, 'subtype_id'] = 70
    # df_events.loc[selector_touch_same_player & same_loc, 'accurate'] = True
    # df_events.loc[selector_touch_same_player & same_loc, 'not_accurate'] = False

    df_events.loc[selector_touch_same_team & same_loc, "type_id"] = 8
    df_events.loc[selector_touch_same_team & same_loc, "subtype_id"] = 85
    df_events.loc[selector_touch_same_team & same_loc, "accurate"] = True
    df_events.loc[selector_touch_same_team & same_loc, "not_accurate"] = False

    df_events.loc[selector_touch_other & same_loc, "type_id"] = 8
    df_events.loc[selector_touch_other & same_loc, "subtype_id"] = 85
    df_events.loc[selector_touch_other & same_loc, "accurate"] = False
    df_events.loc[selector_touch_other & same_loc, "not_accurate"] = True

    return df_events


def create_df_actions(df_events: pd.DataFrame) -> pd.DataFrame:
    """Create the SciSports action dataframe.



    Parameters

    ----------

    df_events : pd.DataFrame

        Wyscout event dataframe



    Returns

    -------

    pd.DataFrame

        SciSports action dataframe

    """
    df_events["time_seconds"] = df_events["milliseconds"] / 1000
    df_actions = df_events[
        [
            "game_id",
            "period_id",
            "time_seconds",
            "team_id",
            "player_id",
            "start_x",
            "start_y",
            "end_x",
            "end_y",
        ]
    ].copy()
    df_actions["original_event_id"] = df_events["event_id"].astype(object)
    df_actions["bodypart_id"] = df_events.apply(determine_bodypart_id, axis=1)
    df_actions["type_id"] = df_events.apply(determine_type_id, axis=1)
    df_actions["result_id"] = df_events.apply(determine_result_id, axis=1)

    df_actions = remove_non_actions(df_actions)  # remove all non-actions left

    return df_actions


def determine_bodypart_id(event: pd.DataFrame) -> int:
    """Determint eht body part for each action.



    Parameters

    ----------

    event : pd.Series

        Wyscout event Series



    Returns

    -------

    int

        id of the body part used for the action

    """
    if event["subtype_id"] in [81, 36, 21, 90, 91]:
        body_part = "other"
    elif event["subtype_id"] == 82:
        body_part = "head"
    elif event["type_id"] == 10 and event["head/body"]:
        body_part = "head/other"
    elif event["left_foot"]:
        body_part = "foot_left"
    elif event["right_foot"]:
        body_part = "foot_right"
    else:  # all other cases
        body_part = "foot"
    return spadlconfig.bodyparts.index(body_part)


def determine_type_id(event: pd.DataFrame) -> int:  # noqa: C901
    """Determine the type of each action.



    This function transforms the Wyscout events, sub_events and tags

    into the corresponding SciSports action type



    Parameters

    ----------

    event : pd.Series

        A series from the Wyscout event dataframe



    Returns

    -------

    int

        id of the action type

    """
    if event["fairplay"]:
        action_type = "non_action"
    elif event["own_goal"]:
        action_type = "bad_touch"
    elif event["type_id"] == 8:
        if event["subtype_id"] == 80:
            action_type = "cross"
        else:
            action_type = "pass"
    elif event["subtype_id"] == 36:
        action_type = "throw_in"
    elif event["subtype_id"] == 30:
        if event["high"]:
            action_type = "corner_crossed"
        else:
            action_type = "corner_short"
    elif event["subtype_id"] == 32:
        action_type = "freekick_crossed"
    elif event["subtype_id"] == 31:
        action_type = "freekick_short"
    elif event["subtype_id"] == 34:
        action_type = "goalkick"
    elif event["type_id"] == 2 and (event["subtype_id"] not in [22, 23, 24, 26]):
        action_type = "foul"
    elif event["type_id"] == 10:
        action_type = "shot"
    elif event["subtype_id"] == 35:
        action_type = "shot_penalty"
    elif event["subtype_id"] == 33:
        action_type = "shot_freekick"
    elif event["type_id"] == 9:
        action_type = "keeper_save"
    elif event["subtype_id"] == 71:
        action_type = "clearance"
    elif event["subtype_id"] == 72 and event["not_accurate"]:
        action_type = "bad_touch"
    elif event["subtype_id"] == 70:
        action_type = "dribble"
    elif event["take_on_left"] or event["take_on_right"]:
        action_type = "take_on"
    elif event["sliding_tackle"]:
        action_type = "tackle"
    elif event["interception"] and (event["subtype_id"] in [0, 10, 11, 12, 13, 72]):
        action_type = "interception"
    else:
        action_type = "non_action"
    return spadlconfig.actiontypes.index(action_type)


def determine_result_id(event: pd.DataFrame) -> int:  # noqa: C901
    """Determine the result of each event.



    Parameters

    ----------

    event : pd.Series

        Wyscout event Series



    Returns

    -------

    int

        result of the action

    """
    if event["offside"] == 1:
        return 2
    if event["type_id"] == 2:  # foul
        if event["yellow_card"]:
            return 4
        elif event["second_yellow_card"] or event["red_card"]:
            return 5
        return 0
    if event["goal"]:  # goal
        return 1
    if event["own_goal"]:  # own goal
        return 3
    if event["subtype_id"] in [100, 33, 35]:  # no goal, so 0
        return 0
    if event["accurate"]:
        return 1
    if event["not_accurate"]:
        return 0
    if (
        event["interception"] or event["clearance"] or event["subtype_id"] == 71
    ):  # interception or clearance always success
        return 1
    if event["type_id"] == 9:  # keeper save always success
        return 1
    # no idea, assume it was successful
    return 1


def remove_non_actions(df_actions: pd.DataFrame) -> pd.DataFrame:
    """Remove the remaining non_actions from the action dataframe.



    Parameters

    ----------

    df_actions : pd.DataFrame

        SciSports action dataframe



    Returns

    -------

    pd.DataFrame

        SciSports action dataframe without non-actions

    """
    df_actions = df_actions[df_actions["type_id"] != spadlconfig.actiontypes.index("non_action")]
    # remove remaining ball out of field, whistle and goalkeeper from line
    df_actions = df_actions.reset_index(drop=True)
    return df_actions


def fix_actions(df_actions: pd.DataFrame) -> pd.DataFrame:
    """Fix the generated actions.



    Parameters

    ----------

    df_actions : pd.DataFrame

        SPADL actions dataframe



    Returns

    -------

    pd.DataFrame

        SpADL actions dataframe with end coordinates for shots

    """
    df_actions["start_x"] = (df_actions["start_x"] * spadlconfig.field_length / 100).clip(
        0, spadlconfig.field_length
    )
    df_actions["start_y"] = (
        (100 - df_actions["start_y"]) * spadlconfig.field_width / 100
        # y is from top to bottom in Wyscout
    ).clip(0, spadlconfig.field_width)
    df_actions["end_x"] = (df_actions["end_x"] * spadlconfig.field_length / 100).clip(
        0, spadlconfig.field_length
    )
    df_actions["end_y"] = (
        (100 - df_actions["end_y"]) * spadlconfig.field_width / 100
        # y is from top to bottom in Wyscout
    ).clip(0, spadlconfig.field_width)
    df_actions = fix_goalkick_coordinates(df_actions)
    df_actions = adjust_goalkick_result(df_actions)
    df_actions = fix_foul_coordinates(df_actions)
    df_actions = fix_keeper_save_coordinates(df_actions)
    df_actions = remove_keeper_goal_actions(df_actions)
    df_actions.reset_index(drop=True, inplace=True)

    return df_actions


def fix_goalkick_coordinates(df_actions: pd.DataFrame) -> pd.DataFrame:
    """Fix goalkick coordinates.



    This function sets the goalkick start coordinates to (5,34)



    Parameters

    ----------

    df_actions : pd.DataFrame

        SciSports action dataframe with start coordinates for goalkicks in the

        corner of the pitch



    Returns

    -------

    pd.DataFrame

        SciSports action dataframe including start coordinates for goalkicks

    """
    goalkicks_idx = df_actions["type_id"] == spadlconfig.actiontypes.index("goalkick")
    df_actions.loc[goalkicks_idx, "start_x"] = 5.0
    df_actions.loc[goalkicks_idx, "start_y"] = 34.0

    return df_actions


def fix_foul_coordinates(df_actions: pd.DataFrame) -> pd.DataFrame:
    """Fix fould coordinates.



    This function sets foul end coordinates equal to the foul start coordinates



    Parameters

    ----------

    df_actions : pd.DataFrame

        SciSports action dataframe with no end coordinates for fouls



    Returns

    -------

    pd.DataFrame

        SciSports action dataframe including start coordinates for goalkicks

    """
    fouls_idx = df_actions["type_id"] == spadlconfig.actiontypes.index("foul")
    df_actions.loc[fouls_idx, "end_x"] = df_actions.loc[fouls_idx, "start_x"]
    df_actions.loc[fouls_idx, "end_y"] = df_actions.loc[fouls_idx, "start_y"]

    return df_actions


def fix_keeper_save_coordinates(df_actions: pd.DataFrame) -> pd.DataFrame:
    """Fix keeper save coordinates.



    This function sets keeper_save start coordinates equal to

    keeper_save end coordinates. It also inverts the shot coordinates to the own goal.



    Parameters

    ----------

    df_actions : pd.DataFrame

        SciSports action dataframe with start coordinates in the corner of the pitch



    Returns

    -------

    pd.DataFrame

        SciSports action dataframe with correct keeper_save coordinates

    """
    saves_idx = df_actions["type_id"] == spadlconfig.actiontypes.index("keeper_save")
    # invert the coordinates
    df_actions.loc[saves_idx, "end_x"] = (
        spadlconfig.field_length - df_actions.loc[saves_idx, "end_x"]
    )
    df_actions.loc[saves_idx, "end_y"] = (
        spadlconfig.field_width - df_actions.loc[saves_idx, "end_y"]
    )
    # set start coordinates equal to start coordinates
    df_actions.loc[saves_idx, "start_x"] = df_actions.loc[saves_idx, "end_x"]
    df_actions.loc[saves_idx, "start_y"] = df_actions.loc[saves_idx, "end_y"]

    return df_actions


def remove_keeper_goal_actions(df_actions: pd.DataFrame) -> pd.DataFrame:
    """Remove keeper goal-saving actions.



    This function removes keeper_save actions that appear directly after a goal



    Parameters

    ----------

    df_actions : pd.DataFrame

        SciSports action dataframe with keeper actions directly after a goal



    Returns

    -------

    pd.DataFrame

        SciSports action dataframe without keeper actions directly after a goal

    """
    prev_actions = df_actions.shift(1)
    same_phase = prev_actions.time_seconds + 10 > df_actions.time_seconds
    shot_goals = (prev_actions.type_id == spadlconfig.actiontypes.index("shot")) & (
        prev_actions.result_id == 1
    )
    penalty_goals = (prev_actions.type_id == spadlconfig.actiontypes.index("shot_penalty")) & (
        prev_actions.result_id == 1
    )
    freekick_goals = (prev_actions.type_id == spadlconfig.actiontypes.index("shot_freekick")) & (
        prev_actions.result_id == 1
    )
    goals = shot_goals | penalty_goals | freekick_goals
    keeper_save = df_actions["type_id"] == spadlconfig.actiontypes.index("keeper_save")
    goals_keepers_idx = same_phase & goals & keeper_save
    df_actions = df_actions.drop(df_actions.index[goals_keepers_idx])
    df_actions = df_actions.reset_index(drop=True)

    return df_actions


def adjust_goalkick_result(df_actions: pd.DataFrame) -> pd.DataFrame:
    """Adjust goalkick results.



    This function adjusts goalkick results depending on whether

    the next action is performed by the same team or not



    Parameters

    ----------

    df_actions : pd.DataFrame

        SciSports action dataframe with incorrect goalkick results



    Returns

    -------

    pd.DataFrame

        SciSports action dataframe with correct goalkick results

    """
    nex_actions = df_actions.shift(-1)
    goalkicks = df_actions["type_id"] == spadlconfig.actiontypes.index("goalkick")
    same_team = df_actions["team_id"] == nex_actions["team_id"]
    accurate = same_team & goalkicks
    not_accurate = ~same_team & goalkicks
    df_actions.loc[accurate, "result_id"] = 1
    df_actions.loc[not_accurate, "result_id"] = 0

    return df_actions