File size: 13,153 Bytes
d6ea71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
"""Implements the VAEP framework.
Attributes
----------
xfns_default : list(callable)
The default VAEP features.
"""
import math
from typing import Any, Optional
import numpy as np
import pandas as pd
from sklearn.exceptions import NotFittedError
from sklearn.metrics import brier_score_loss, roc_auc_score
import socceraction.spadl as spadlcfg
from . import features as fs
from . import formula as vaep
from . import labels as lab
try:
import xgboost
except ImportError:
xgboost = None # type: ignore
try:
import catboost
except ImportError:
catboost = None # type: ignore
try:
import lightgbm
except ImportError:
lightgbm = None # type: ignore
xfns_default = [
fs.actiontype_onehot,
fs.result_onehot,
fs.actiontype_result_onehot,
fs.bodypart_onehot,
fs.time,
fs.startlocation,
fs.endlocation,
fs.startpolar,
fs.endpolar,
fs.movement,
fs.team,
fs.time_delta,
fs.space_delta,
fs.goalscore,
]
class VAEP:
"""
An implementation of the VAEP framework.
VAEP (Valuing Actions by Estimating Probabilities) [1]_ defines the
problem of valuing a soccer player's contributions within a match as
a binary classification problem and rates actions by estimating its effect
on the short-term probablities that a team will both score and concede.
Parameters
----------
xfns : list
List of feature transformers (see :mod:`socceraction.vaep.features`)
used to describe the game states. Uses :attr:`~socceraction.vaep.base.xfns_default`
if None.
nb_prev_actions : int, default=3 # noqa: DAR103
Number of previous actions used to decscribe the game state.
References
----------
.. [1] Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis.
"Actions speak louder than goals: Valuing player actions in soccer." In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1851-1861. 2019.
"""
_spadlcfg = spadlcfg
_fs = fs
_lab = lab
_vaep = vaep
def __init__(
self,
xfns: Optional[list[fs.FeatureTransfomer]] = None,
nb_prev_actions: int = 3,
) -> None:
self.__models: dict[str, Any] = {}
self.xfns = xfns_default if xfns is None else xfns
self.yfns = [self._lab.scores, self._lab.concedes]
self.nb_prev_actions = nb_prev_actions
def compute_features(self, game: pd.Series, game_actions: fs.Actions) -> pd.DataFrame:
"""
Transform actions to the feature-based representation of game states.
Parameters
----------
game : pd.Series
The SPADL representation of a single game.
game_actions : pd.DataFrame
The actions performed during `game` in the SPADL representation.
Returns
-------
features : pd.DataFrame
Returns the feature-based representation of each game state in the game.
"""
game_actions_with_names = self._spadlcfg.add_names(game_actions) # type: ignore
gamestates = self._fs.gamestates(game_actions_with_names, self.nb_prev_actions)
gamestates = self._fs.play_left_to_right(gamestates, game.home_team_id)
return pd.concat([fn(gamestates) for fn in self.xfns], axis=1)
def compute_labels(
self,
game: pd.Series,
game_actions: fs.Actions, # pylint: disable=W0613
) -> pd.DataFrame:
"""
Compute the labels for each game state in the given game.
Parameters
----------
game : pd.Series
The SPADL representation of a single game.
game_actions : pd.DataFrame
The actions performed during `game` in the SPADL representation.
Returns
-------
labels : pd.DataFrame
Returns the labels of each game state in the game.
"""
game_actions_with_names = self._spadlcfg.add_names(game_actions) # type: ignore
return pd.concat([fn(game_actions_with_names) for fn in self.yfns], axis=1)
def fit(
self,
X: pd.DataFrame,
y: pd.DataFrame,
learner: str = "xgboost",
val_size: float = 0.25,
tree_params: Optional[dict[str, Any]] = None,
fit_params: Optional[dict[str, Any]] = None,
) -> "VAEP":
"""
Fit the model according to the given training data.
Parameters
----------
X : pd.DataFrame
Feature representation of the game states.
y : pd.DataFrame
Scoring and conceding labels for each game state.
learner : string, default='xgboost' # noqa: DAR103
Gradient boosting implementation which should be used to learn the
model. The supported learners are 'xgboost', 'catboost' and 'lightgbm'.
val_size : float, default=0.25 # noqa: DAR103
Percentage of the dataset that will be used as the validation set
for early stopping. When zero, no validation data will be used.
tree_params : dict
Parameters passed to the constructor of the learner.
fit_params : dict
Parameters passed to the fit method of the learner.
Raises
------
ValueError
If one of the features is missing in the provided dataframe.
Returns
-------
self
Fitted VAEP model.
"""
nb_states = len(X)
idx = np.random.permutation(nb_states)
# fmt: off
train_idx = idx[:math.floor(nb_states * (1 - val_size))]
val_idx = idx[(math.floor(nb_states * (1 - val_size)) + 1):]
# fmt: on
# filter feature columns
cols = self._fs.feature_column_names(self.xfns, self.nb_prev_actions)
if not set(cols).issubset(set(X.columns)):
missing_cols = " and ".join(set(cols).difference(X.columns))
raise ValueError(f"{missing_cols} are not available in the features dataframe")
# split train and validation data
X_train, y_train = X.iloc[train_idx][cols], y.iloc[train_idx]
X_val, y_val = X.iloc[val_idx][cols], y.iloc[val_idx]
# train classifiers F(X) = Y
for col in list(y.columns):
eval_set = [(X_val, y_val[col])] if val_size > 0 else None
if learner == "xgboost":
self.__models[col] = self._fit_xgboost(
X_train, y_train[col], eval_set, tree_params, fit_params
)
elif learner == "catboost":
self.__models[col] = self._fit_catboost(
X_train, y_train[col], eval_set, tree_params, fit_params
)
elif learner == "lightgbm":
self.__models[col] = self._fit_lightgbm(
X_train, y_train[col], eval_set, tree_params, fit_params
)
else:
raise ValueError(f"A {learner} learner is not supported")
return self
def _fit_xgboost(
self,
X: pd.DataFrame,
y: pd.Series,
eval_set: Optional[list[tuple[pd.DataFrame, pd.Series]]] = None,
tree_params: Optional[dict[str, Any]] = None,
fit_params: Optional[dict[str, Any]] = None,
) -> "xgboost.XGBClassifier":
if xgboost is None:
raise ImportError("xgboost is not installed.")
# Default settings
if tree_params is None:
tree_params = {
"n_estimators": 100,
"max_depth": 3,
"eval_metric": "auc",
"early_stopping_rounds": 10,
"enable_categorical": True,
}
if fit_params is None:
fit_params = {"verbose": True}
if eval_set is not None:
val_params = {"eval_set": eval_set}
fit_params = {**fit_params, **val_params}
# Train the model
model = xgboost.XGBClassifier(**tree_params)
return model.fit(X, y, **fit_params)
def _fit_catboost(
self,
X: pd.DataFrame,
y: pd.Series,
eval_set: Optional[list[tuple[pd.DataFrame, pd.Series]]] = None,
tree_params: Optional[dict[str, Any]] = None,
fit_params: Optional[dict[str, Any]] = None,
) -> "catboost.CatBoostClassifier":
if catboost is None:
raise ImportError("catboost is not installed.")
# Default settings
if tree_params is None:
tree_params = {
"eval_metric": "BrierScore",
"loss_function": "Logloss",
"iterations": 100,
}
if fit_params is None:
is_cat_feature = [c.dtype.name == "category" for (_, c) in X.iteritems()]
fit_params = {
"cat_features": np.nonzero(is_cat_feature)[0].tolist(),
"verbose": True,
}
if eval_set is not None:
val_params = {"early_stopping_rounds": 10, "eval_set": eval_set}
fit_params = {**fit_params, **val_params}
# Train the model
model = catboost.CatBoostClassifier(**tree_params)
return model.fit(X, y, **fit_params)
def _fit_lightgbm(
self,
X: pd.DataFrame,
y: pd.Series,
eval_set: Optional[list[tuple[pd.DataFrame, pd.Series]]] = None,
tree_params: Optional[dict[str, Any]] = None,
fit_params: Optional[dict[str, Any]] = None,
) -> "lightgbm.LGBMClassifier":
if lightgbm is None:
raise ImportError("lightgbm is not installed.")
if tree_params is None:
tree_params = {"n_estimators": 100, "max_depth": 3}
if fit_params is None:
fit_params = {"eval_metric": "auc", "verbose": True}
if eval_set is not None:
val_params = {"early_stopping_rounds": 10, "eval_set": eval_set}
fit_params = {**fit_params, **val_params}
# Train the model
model = lightgbm.LGBMClassifier(**tree_params)
return model.fit(X, y, **fit_params)
def _estimate_probabilities(self, X: pd.DataFrame) -> pd.DataFrame:
# filter feature columns
cols = self._fs.feature_column_names(self.xfns, self.nb_prev_actions)
if not set(cols).issubset(set(X.columns)):
missing_cols = " and ".join(set(cols).difference(X.columns))
raise ValueError(f"{missing_cols} are not available in the features dataframe")
Y_hat = pd.DataFrame()
for col in self.__models:
Y_hat[col] = [p[1] for p in self.__models[col].predict_proba(X[cols])]
return Y_hat
def rate(
self,
game: pd.Series,
game_actions: fs.Actions,
game_states: Optional[fs.Features] = None,
) -> pd.DataFrame:
"""
Compute the VAEP rating for the given game states.
Parameters
----------
game : pd.Series
The SPADL representation of a single game.
game_actions : pd.DataFrame
The actions performed during `game` in the SPADL representation.
game_states : pd.DataFrame, default=None
DataFrame with the game state representation of each action. If
`None`, these will be computed on-th-fly.
Raises
------
NotFittedError
If the model is not fitted yet.
Returns
-------
ratings : pd.DataFrame
Returns the VAEP rating for each given action, as well as the
offensive and defensive value of each action.
"""
if not self.__models:
raise NotFittedError()
game_actions_with_names = self._spadlcfg.add_names(game_actions) # type: ignore
if game_states is None:
game_states = self.compute_features(game, game_actions)
y_hat = self._estimate_probabilities(game_states)
p_scores, p_concedes = y_hat.scores, y_hat.concedes
vaep_values = self._vaep.value(game_actions_with_names, p_scores, p_concedes)
return vaep_values
def score(self, X: pd.DataFrame, y: pd.DataFrame) -> dict[str, dict[str, float]]:
"""Evaluate the fit of the model on the given test data and labels.
Parameters
----------
X : pd.DataFrame
Feature representation of the game states.
y : pd.DataFrame
Scoring and conceding labels for each game state.
Raises
------
NotFittedError
If the model is not fitted yet.
Returns
-------
score : dict
The Brier and AUROC scores for both binary classification problems.
"""
if not self.__models:
raise NotFittedError()
y_hat = self._estimate_probabilities(X)
scores: dict[str, dict[str, float]] = {}
for col in self.__models:
scores[col] = {}
scores[col]["brier"] = brier_score_loss(y[col], y_hat[col])
scores[col]["auroc"] = roc_auc_score(y[col], y_hat[col])
return scores
|