File size: 16,924 Bytes
d6ea71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
"""Implements the xT framework."""
import json
import os
from typing import Callable, Optional
import numpy as np
import numpy.typing as npt
import pandas as pd
from pandera.typing import DataFrame, Series
from sklearn.exceptions import NotFittedError
import socceraction.spadl.config as spadlconfig
from socceraction.spadl.schema import SPADLSchema
try:
from scipy.interpolate import interp2d # type: ignore
except ImportError: # pragma: no cover
interp2d = None
M: int = 12
N: int = 16
def _get_cell_indexes(
x: Series[float], y: Series[float], l: int = N, w: int = M
) -> tuple[Series[int], Series[int]]:
xi = x.divide(spadlconfig.field_length).multiply(l)
yj = y.divide(spadlconfig.field_width).multiply(w)
xi = xi.astype("int64").clip(0, l - 1)
yj = yj.astype("int64").clip(0, w - 1)
return xi, yj
def _get_flat_indexes(x: Series[float], y: Series[float], l: int = N, w: int = M) -> Series[int]:
xi, yj = _get_cell_indexes(x, y, l, w)
return yj.rsub(w - 1).mul(l).add(xi)
def _count(x: Series[float], y: Series[float], l: int = N, w: int = M) -> npt.NDArray[np.int_]:
"""Count the number of actions occurring in each cell of the grid.
Parameters
----------
x : pd.Series
The x-coordinates of the actions.
y : pd.Series
The y-coordinates of the actions.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
np.ndarray
A matrix, denoting the amount of actions occurring in each cell. The
top-left corner is the origin.
"""
x = x[~np.isnan(x) & ~np.isnan(y)]
y = y[~np.isnan(x) & ~np.isnan(y)]
flat_indexes = _get_flat_indexes(x, y, l, w)
vc = flat_indexes.value_counts(sort=False)
vector = np.zeros(w * l, dtype=int)
vector[vc.index] = vc
return vector.reshape((w, l))
def _safe_divide(a: npt.ArrayLike, b: npt.ArrayLike) -> npt.NDArray[np.float64]:
return np.divide(a, b, out=np.zeros_like(a, dtype="float64"), where=b != 0, casting="unsafe")
def scoring_prob(
actions: DataFrame[SPADLSchema], l: int = N, w: int = M
) -> npt.NDArray[np.float64]:
"""Compute the probability of scoring when taking a shot for each cell.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
np.ndarray
A matrix, denoting the probability of scoring for each cell.
"""
shot_actions = actions[(actions.type_id == spadlconfig.actiontypes.index("shot"))]
goals = shot_actions[(shot_actions.result_id == spadlconfig.results.index("success"))]
shotmatrix = _count(shot_actions.start_x, shot_actions.start_y, l, w)
goalmatrix = _count(goals.start_x, goals.start_y, l, w)
return _safe_divide(goalmatrix, shotmatrix)
def get_move_actions(actions: DataFrame[SPADLSchema]) -> DataFrame[SPADLSchema]:
"""Get all ball-progressing actions.
These include passes, dribbles and crosses. Take-ons are ignored because
they typically coincide with dribbles and do not move the ball to
a different cell.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
Returns
-------
pd.DataFrame
All ball-progressing actions in the input dataframe.
"""
return actions[
(actions.type_id == spadlconfig.actiontypes.index("pass"))
| (actions.type_id == spadlconfig.actiontypes.index("dribble"))
| (actions.type_id == spadlconfig.actiontypes.index("cross"))
]
def get_successful_move_actions(actions: DataFrame[SPADLSchema]) -> DataFrame[SPADLSchema]:
"""Get all successful ball-progressing actions.
These include successful passes, dribbles and crosses.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
Returns
-------
pd.DataFrame
All ball-progressing actions in the input dataframe.
"""
move_actions = get_move_actions(actions)
return move_actions[(move_actions.result_id == spadlconfig.results.index("success"))]
def action_prob(
actions: DataFrame[SPADLSchema], l: int = N, w: int = M
) -> tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]:
"""Compute the probability of taking an action in each cell of the grid.
The options are: shooting or moving.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
shotmatrix : np.ndarray
For each cell the probability of choosing to shoot.
movematrix : np.ndarray
For each cell the probability of choosing to move.
"""
move_actions = get_move_actions(actions)
shot_actions = actions[(actions.type_id == spadlconfig.actiontypes.index("shot"))]
movematrix = _count(move_actions.start_x, move_actions.start_y, l, w)
shotmatrix = _count(shot_actions.start_x, shot_actions.start_y, l, w)
totalmatrix = movematrix + shotmatrix
return _safe_divide(shotmatrix, totalmatrix), _safe_divide(movematrix, totalmatrix)
def move_transition_matrix(
actions: DataFrame[SPADLSchema], l: int = N, w: int = M
) -> npt.NDArray[np.float64]:
"""Compute the move transition matrix from the given actions.
This is, when a player chooses to move, the probability that he will
end up in each of the other cells of the grid successfully.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
np.ndarray
The transition matrix.
"""
move_actions = get_move_actions(actions)
X = pd.DataFrame()
X["start_cell"] = _get_flat_indexes(move_actions.start_x, move_actions.start_y, l, w)
X["end_cell"] = _get_flat_indexes(move_actions.end_x, move_actions.end_y, l, w)
X["result_id"] = move_actions.result_id
vc = X.start_cell.value_counts(sort=False)
start_counts = np.zeros(w * l)
start_counts[vc.index] = vc
transition_matrix = np.zeros((w * l, w * l))
for i in range(0, w * l):
vc2 = X[
((X.start_cell == i) & (X.result_id == spadlconfig.results.index("success")))
].end_cell.value_counts(sort=False)
transition_matrix[i, vc2.index] = vc2 / start_counts[i]
return transition_matrix
class ExpectedThreat:
"""An implementation of the Expected Threat (xT) model.
The xT model [1]_ can be used to value actions that successfully move
the ball between two locations on the pitch by computing the difference
between the long-term probability of scoring on the start and end location
of an action.
Parameters
----------
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
eps : float
The desired precision to calculate the xT value of a cell. Default is
5 decimal places of precision (1e-5).
Attributes
----------
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
eps : float
The desired precision to calculate the xT value of a cell. Default is
5 decimal places of precision (1e-5).
heatmaps : list(np.ndarray)
The i-th element corresponds to the xT value surface after i iterations.
xT : np.ndarray
The final xT value surface.
scoring_prob_matrix : np.ndarray, shape(M,N)
The probability of scoring when taking a shot for each cell.
shot_prob_matrix : np.ndarray, shape(M,N)
The probability of choosing to shoot for each cell.
move_prob_matrix : np.ndarray, shape(M,N)
The probability of choosing to move for each cell.
transition_matrix : np.ndarray, shape(M*N,M*N)
When moving, the probability of moving to each of the other zones.
References
----------
.. [1] Singh, Karun. "Introducing Expected Threat (xT)." 15 February, 2019.
https://karun.in/blog/expected-threat.html
"""
def __init__(self, l: int = N, w: int = M, eps: float = 1e-5) -> None:
self.l = l
self.w = w
self.eps = eps
self.heatmaps: list[npt.NDArray[np.float64]] = []
self.xT: npt.NDArray[np.float64] = np.zeros((self.w, self.l))
self.scoring_prob_matrix: Optional[npt.NDArray[np.float64]] = None
self.shot_prob_matrix: Optional[npt.NDArray[np.float64]] = None
self.move_prob_matrix: Optional[npt.NDArray[np.float64]] = None
self.transition_matrix: Optional[npt.NDArray[np.float64]] = None
def __solve(
self,
p_scoring: npt.NDArray[np.float64],
p_shot: npt.NDArray[np.float64],
p_move: npt.NDArray[np.float64],
transition_matrix: npt.NDArray[np.float64],
) -> None:
"""Solves the expected threat equation with dynamic programming.
Parameters
----------
p_scoring : (np.ndarray, shape(M, N)):
Probability of scoring at each grid cell, when shooting from that cell.
p_shot : (np.ndarray, shape(M,N)):
For each grid cell, the probability of choosing to shoot from there.
p_move : (np.ndarray, shape(M,N)):
For each grid cell, the probability of choosing to move from there.
transition_matrix : (np.ndarray, shape(M*N,M*N)):
When moving, the probability of moving to each of the other zones.
"""
gs = p_scoring * p_shot
diff = np.ones((self.w, self.l), dtype=np.float64)
it = 0
self.heatmaps.append(self.xT.copy())
while np.any(diff > self.eps):
total_payoff = np.zeros((self.w, self.l), dtype=np.float64)
for y in range(0, self.w):
for x in range(0, self.l):
for q in range(0, self.w):
for z in range(0, self.l):
total_payoff[y, x] += (
transition_matrix[self.l * y + x, self.l * q + z] * self.xT[q, z]
)
newxT = gs + (p_move * total_payoff)
diff = newxT - self.xT
self.xT = newxT
self.heatmaps.append(self.xT.copy())
it += 1
print("# iterations: ", it)
def fit(self, actions: DataFrame[SPADLSchema]) -> "ExpectedThreat":
"""Fits the xT model with the given actions.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
Returns
-------
self
Fitted xT model.
"""
self.scoring_prob_matrix = scoring_prob(actions, self.l, self.w)
self.shot_prob_matrix, self.move_prob_matrix = action_prob(actions, self.l, self.w)
self.transition_matrix = move_transition_matrix(actions, self.l, self.w)
self.xT = np.zeros((self.w, self.l))
self.__solve(
self.scoring_prob_matrix,
self.shot_prob_matrix,
self.move_prob_matrix,
self.transition_matrix,
)
return self
def interpolator(
self, kind: str = "linear"
) -> Callable[[npt.NDArray[np.float64], npt.NDArray[np.float64]], npt.NDArray[np.float64]]:
"""Interpolate over the pitch.
This is a wrapper around :func:`scipy.interpolate.interp2d`.
Parameters
----------
kind : {'linear', 'cubic', 'quintic'} # noqa: DAR103
The kind of spline interpolation to use. Default is ‘linear’.
Raises
------
ImportError
If scipy is not installed.
Returns
-------
callable
A function that interpolates xT values over the pitch.
"""
if interp2d is None:
raise ImportError("Interpolation requires scipy to be installed.")
cell_length = spadlconfig.field_length / self.l
cell_width = spadlconfig.field_width / self.w
x = np.arange(0.0, spadlconfig.field_length, cell_length) + 0.5 * cell_length
y = np.arange(0.0, spadlconfig.field_width, cell_width) + 0.5 * cell_width
return interp2d(x=x, y=y, z=self.xT, kind=kind, bounds_error=False)
def rate(
self, actions: DataFrame[SPADLSchema], use_interpolation: bool = False
) -> npt.NDArray[np.float64]:
"""Compute the xT values for the given actions.
xT should only be used to value actions that move the ball and also
keep the current team in possession of the ball. All other actions in
the given dataframe receive a `NaN` rating.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
use_interpolation : bool
Indicates whether to use bilinear interpolation when inferring xT
values. Note that this requires Scipy to be installed (pip install
scipy).
Raises
------
NotFittedError
If the model has not been fitted yet.
Returns
-------
np.ndarray
The xT value for each action.
"""
if not np.any(self.xT):
raise NotFittedError()
if not use_interpolation:
l = self.l
w = self.w
grid = self.xT
else:
# Use interpolation to create a
# more fine-grained 1050 x 680 grid
interp = self.interpolator()
l = int(spadlconfig.field_length * 10)
w = int(spadlconfig.field_width * 10)
xs = np.linspace(0, spadlconfig.field_length, l)
ys = np.linspace(0, spadlconfig.field_width, w)
grid = interp(xs, ys)
ratings = np.empty(len(actions))
ratings[:] = np.NaN
move_actions = get_successful_move_actions(actions.reset_index())
startxc, startyc = _get_cell_indexes(move_actions.start_x, move_actions.start_y, l, w)
endxc, endyc = _get_cell_indexes(move_actions.end_x, move_actions.end_y, l, w)
xT_start = grid[startyc.rsub(w - 1), startxc]
xT_end = grid[endyc.rsub(w - 1), endxc]
ratings[move_actions.index] = xT_end - xT_start
return ratings
def save_model(self, filepath: str, overwrite: bool = True) -> None:
"""Save the xT value surface in JSON format.
This stores only the xT value surface, which is all you need to compute
xT values for new data. The value surface can be loaded back with the
:func:`socceraction.xthreat.load_model` function.
Pickle the `ExpectedThreat` instance to store the entire model and to
retain the transition, shot probability, move probability and scoring
probability matrices.
Raises
------
NotFittedError
If the model has not been fitted yet.
ValueError
If the specified output file already exists and "overwrite" is set
to False.
Parameters
----------
filepath : str
Path to the file to save the value surface to.
overwrite : bool
Whether to silently overwrite any existing file at the target
location.
"""
if not np.any(self.xT):
raise NotFittedError()
# If file exists and should not be overwritten:
if not overwrite and os.path.isfile(filepath):
raise ValueError(
'save_xt got overwrite="False", but a file '
f"({filepath}) exists already. No data was saved."
)
with open(filepath, "w") as f:
json.dump(self.xT.tolist(), f)
def load_model(path: str) -> ExpectedThreat:
"""Create a model from a pre-computed xT value surface.
The value surface should be provided as a JSON file containing a 2D
matrix. Karun Singh provides such a grid at the follwing url:
https://karun.in/blog/data/open_xt_12x8_v1.json
Parameters
----------
path : str
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file.
Returns
-------
ExpectedThreat
An xT model that uses the given value surface to value actions.
"""
grid = pd.read_json(path)
model = ExpectedThreat()
model.xT = grid.values
model.w, model.l = model.xT.shape
return model
|