socr / socceraction /xthreat.py
scfive's picture
Upload 203 files
d6ea71e verified
"""Implements the xT framework."""
import json
import os
from typing import Callable, Optional
import numpy as np
import numpy.typing as npt
import pandas as pd
from pandera.typing import DataFrame, Series
from sklearn.exceptions import NotFittedError
import socceraction.spadl.config as spadlconfig
from socceraction.spadl.schema import SPADLSchema
try:
from scipy.interpolate import interp2d # type: ignore
except ImportError: # pragma: no cover
interp2d = None
M: int = 12
N: int = 16
def _get_cell_indexes(
x: Series[float], y: Series[float], l: int = N, w: int = M
) -> tuple[Series[int], Series[int]]:
xi = x.divide(spadlconfig.field_length).multiply(l)
yj = y.divide(spadlconfig.field_width).multiply(w)
xi = xi.astype("int64").clip(0, l - 1)
yj = yj.astype("int64").clip(0, w - 1)
return xi, yj
def _get_flat_indexes(x: Series[float], y: Series[float], l: int = N, w: int = M) -> Series[int]:
xi, yj = _get_cell_indexes(x, y, l, w)
return yj.rsub(w - 1).mul(l).add(xi)
def _count(x: Series[float], y: Series[float], l: int = N, w: int = M) -> npt.NDArray[np.int_]:
"""Count the number of actions occurring in each cell of the grid.
Parameters
----------
x : pd.Series
The x-coordinates of the actions.
y : pd.Series
The y-coordinates of the actions.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
np.ndarray
A matrix, denoting the amount of actions occurring in each cell. The
top-left corner is the origin.
"""
x = x[~np.isnan(x) & ~np.isnan(y)]
y = y[~np.isnan(x) & ~np.isnan(y)]
flat_indexes = _get_flat_indexes(x, y, l, w)
vc = flat_indexes.value_counts(sort=False)
vector = np.zeros(w * l, dtype=int)
vector[vc.index] = vc
return vector.reshape((w, l))
def _safe_divide(a: npt.ArrayLike, b: npt.ArrayLike) -> npt.NDArray[np.float64]:
return np.divide(a, b, out=np.zeros_like(a, dtype="float64"), where=b != 0, casting="unsafe")
def scoring_prob(
actions: DataFrame[SPADLSchema], l: int = N, w: int = M
) -> npt.NDArray[np.float64]:
"""Compute the probability of scoring when taking a shot for each cell.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
np.ndarray
A matrix, denoting the probability of scoring for each cell.
"""
shot_actions = actions[(actions.type_id == spadlconfig.actiontypes.index("shot"))]
goals = shot_actions[(shot_actions.result_id == spadlconfig.results.index("success"))]
shotmatrix = _count(shot_actions.start_x, shot_actions.start_y, l, w)
goalmatrix = _count(goals.start_x, goals.start_y, l, w)
return _safe_divide(goalmatrix, shotmatrix)
def get_move_actions(actions: DataFrame[SPADLSchema]) -> DataFrame[SPADLSchema]:
"""Get all ball-progressing actions.
These include passes, dribbles and crosses. Take-ons are ignored because
they typically coincide with dribbles and do not move the ball to
a different cell.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
Returns
-------
pd.DataFrame
All ball-progressing actions in the input dataframe.
"""
return actions[
(actions.type_id == spadlconfig.actiontypes.index("pass"))
| (actions.type_id == spadlconfig.actiontypes.index("dribble"))
| (actions.type_id == spadlconfig.actiontypes.index("cross"))
]
def get_successful_move_actions(actions: DataFrame[SPADLSchema]) -> DataFrame[SPADLSchema]:
"""Get all successful ball-progressing actions.
These include successful passes, dribbles and crosses.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
Returns
-------
pd.DataFrame
All ball-progressing actions in the input dataframe.
"""
move_actions = get_move_actions(actions)
return move_actions[(move_actions.result_id == spadlconfig.results.index("success"))]
def action_prob(
actions: DataFrame[SPADLSchema], l: int = N, w: int = M
) -> tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]:
"""Compute the probability of taking an action in each cell of the grid.
The options are: shooting or moving.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
shotmatrix : np.ndarray
For each cell the probability of choosing to shoot.
movematrix : np.ndarray
For each cell the probability of choosing to move.
"""
move_actions = get_move_actions(actions)
shot_actions = actions[(actions.type_id == spadlconfig.actiontypes.index("shot"))]
movematrix = _count(move_actions.start_x, move_actions.start_y, l, w)
shotmatrix = _count(shot_actions.start_x, shot_actions.start_y, l, w)
totalmatrix = movematrix + shotmatrix
return _safe_divide(shotmatrix, totalmatrix), _safe_divide(movematrix, totalmatrix)
def move_transition_matrix(
actions: DataFrame[SPADLSchema], l: int = N, w: int = M
) -> npt.NDArray[np.float64]:
"""Compute the move transition matrix from the given actions.
This is, when a player chooses to move, the probability that he will
end up in each of the other cells of the grid successfully.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
Returns
-------
np.ndarray
The transition matrix.
"""
move_actions = get_move_actions(actions)
X = pd.DataFrame()
X["start_cell"] = _get_flat_indexes(move_actions.start_x, move_actions.start_y, l, w)
X["end_cell"] = _get_flat_indexes(move_actions.end_x, move_actions.end_y, l, w)
X["result_id"] = move_actions.result_id
vc = X.start_cell.value_counts(sort=False)
start_counts = np.zeros(w * l)
start_counts[vc.index] = vc
transition_matrix = np.zeros((w * l, w * l))
for i in range(0, w * l):
vc2 = X[
((X.start_cell == i) & (X.result_id == spadlconfig.results.index("success")))
].end_cell.value_counts(sort=False)
transition_matrix[i, vc2.index] = vc2 / start_counts[i]
return transition_matrix
class ExpectedThreat:
"""An implementation of the Expected Threat (xT) model.
The xT model [1]_ can be used to value actions that successfully move
the ball between two locations on the pitch by computing the difference
between the long-term probability of scoring on the start and end location
of an action.
Parameters
----------
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
eps : float
The desired precision to calculate the xT value of a cell. Default is
5 decimal places of precision (1e-5).
Attributes
----------
l : int
Amount of grid cells in the x-dimension of the grid.
w : int
Amount of grid cells in the y-dimension of the grid.
eps : float
The desired precision to calculate the xT value of a cell. Default is
5 decimal places of precision (1e-5).
heatmaps : list(np.ndarray)
The i-th element corresponds to the xT value surface after i iterations.
xT : np.ndarray
The final xT value surface.
scoring_prob_matrix : np.ndarray, shape(M,N)
The probability of scoring when taking a shot for each cell.
shot_prob_matrix : np.ndarray, shape(M,N)
The probability of choosing to shoot for each cell.
move_prob_matrix : np.ndarray, shape(M,N)
The probability of choosing to move for each cell.
transition_matrix : np.ndarray, shape(M*N,M*N)
When moving, the probability of moving to each of the other zones.
References
----------
.. [1] Singh, Karun. "Introducing Expected Threat (xT)." 15 February, 2019.
https://karun.in/blog/expected-threat.html
"""
def __init__(self, l: int = N, w: int = M, eps: float = 1e-5) -> None:
self.l = l
self.w = w
self.eps = eps
self.heatmaps: list[npt.NDArray[np.float64]] = []
self.xT: npt.NDArray[np.float64] = np.zeros((self.w, self.l))
self.scoring_prob_matrix: Optional[npt.NDArray[np.float64]] = None
self.shot_prob_matrix: Optional[npt.NDArray[np.float64]] = None
self.move_prob_matrix: Optional[npt.NDArray[np.float64]] = None
self.transition_matrix: Optional[npt.NDArray[np.float64]] = None
def __solve(
self,
p_scoring: npt.NDArray[np.float64],
p_shot: npt.NDArray[np.float64],
p_move: npt.NDArray[np.float64],
transition_matrix: npt.NDArray[np.float64],
) -> None:
"""Solves the expected threat equation with dynamic programming.
Parameters
----------
p_scoring : (np.ndarray, shape(M, N)):
Probability of scoring at each grid cell, when shooting from that cell.
p_shot : (np.ndarray, shape(M,N)):
For each grid cell, the probability of choosing to shoot from there.
p_move : (np.ndarray, shape(M,N)):
For each grid cell, the probability of choosing to move from there.
transition_matrix : (np.ndarray, shape(M*N,M*N)):
When moving, the probability of moving to each of the other zones.
"""
gs = p_scoring * p_shot
diff = np.ones((self.w, self.l), dtype=np.float64)
it = 0
self.heatmaps.append(self.xT.copy())
while np.any(diff > self.eps):
total_payoff = np.zeros((self.w, self.l), dtype=np.float64)
for y in range(0, self.w):
for x in range(0, self.l):
for q in range(0, self.w):
for z in range(0, self.l):
total_payoff[y, x] += (
transition_matrix[self.l * y + x, self.l * q + z] * self.xT[q, z]
)
newxT = gs + (p_move * total_payoff)
diff = newxT - self.xT
self.xT = newxT
self.heatmaps.append(self.xT.copy())
it += 1
print("# iterations: ", it)
def fit(self, actions: DataFrame[SPADLSchema]) -> "ExpectedThreat":
"""Fits the xT model with the given actions.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
Returns
-------
self
Fitted xT model.
"""
self.scoring_prob_matrix = scoring_prob(actions, self.l, self.w)
self.shot_prob_matrix, self.move_prob_matrix = action_prob(actions, self.l, self.w)
self.transition_matrix = move_transition_matrix(actions, self.l, self.w)
self.xT = np.zeros((self.w, self.l))
self.__solve(
self.scoring_prob_matrix,
self.shot_prob_matrix,
self.move_prob_matrix,
self.transition_matrix,
)
return self
def interpolator(
self, kind: str = "linear"
) -> Callable[[npt.NDArray[np.float64], npt.NDArray[np.float64]], npt.NDArray[np.float64]]:
"""Interpolate over the pitch.
This is a wrapper around :func:`scipy.interpolate.interp2d`.
Parameters
----------
kind : {'linear', 'cubic', 'quintic'} # noqa: DAR103
The kind of spline interpolation to use. Default is ‘linear’.
Raises
------
ImportError
If scipy is not installed.
Returns
-------
callable
A function that interpolates xT values over the pitch.
"""
if interp2d is None:
raise ImportError("Interpolation requires scipy to be installed.")
cell_length = spadlconfig.field_length / self.l
cell_width = spadlconfig.field_width / self.w
x = np.arange(0.0, spadlconfig.field_length, cell_length) + 0.5 * cell_length
y = np.arange(0.0, spadlconfig.field_width, cell_width) + 0.5 * cell_width
return interp2d(x=x, y=y, z=self.xT, kind=kind, bounds_error=False)
def rate(
self, actions: DataFrame[SPADLSchema], use_interpolation: bool = False
) -> npt.NDArray[np.float64]:
"""Compute the xT values for the given actions.
xT should only be used to value actions that move the ball and also
keep the current team in possession of the ball. All other actions in
the given dataframe receive a `NaN` rating.
Parameters
----------
actions : pd.DataFrame
Actions, in SPADL format.
use_interpolation : bool
Indicates whether to use bilinear interpolation when inferring xT
values. Note that this requires Scipy to be installed (pip install
scipy).
Raises
------
NotFittedError
If the model has not been fitted yet.
Returns
-------
np.ndarray
The xT value for each action.
"""
if not np.any(self.xT):
raise NotFittedError()
if not use_interpolation:
l = self.l
w = self.w
grid = self.xT
else:
# Use interpolation to create a
# more fine-grained 1050 x 680 grid
interp = self.interpolator()
l = int(spadlconfig.field_length * 10)
w = int(spadlconfig.field_width * 10)
xs = np.linspace(0, spadlconfig.field_length, l)
ys = np.linspace(0, spadlconfig.field_width, w)
grid = interp(xs, ys)
ratings = np.empty(len(actions))
ratings[:] = np.NaN
move_actions = get_successful_move_actions(actions.reset_index())
startxc, startyc = _get_cell_indexes(move_actions.start_x, move_actions.start_y, l, w)
endxc, endyc = _get_cell_indexes(move_actions.end_x, move_actions.end_y, l, w)
xT_start = grid[startyc.rsub(w - 1), startxc]
xT_end = grid[endyc.rsub(w - 1), endxc]
ratings[move_actions.index] = xT_end - xT_start
return ratings
def save_model(self, filepath: str, overwrite: bool = True) -> None:
"""Save the xT value surface in JSON format.
This stores only the xT value surface, which is all you need to compute
xT values for new data. The value surface can be loaded back with the
:func:`socceraction.xthreat.load_model` function.
Pickle the `ExpectedThreat` instance to store the entire model and to
retain the transition, shot probability, move probability and scoring
probability matrices.
Raises
------
NotFittedError
If the model has not been fitted yet.
ValueError
If the specified output file already exists and "overwrite" is set
to False.
Parameters
----------
filepath : str
Path to the file to save the value surface to.
overwrite : bool
Whether to silently overwrite any existing file at the target
location.
"""
if not np.any(self.xT):
raise NotFittedError()
# If file exists and should not be overwritten:
if not overwrite and os.path.isfile(filepath):
raise ValueError(
'save_xt got overwrite="False", but a file '
f"({filepath}) exists already. No data was saved."
)
with open(filepath, "w") as f:
json.dump(self.xT.tolist(), f)
def load_model(path: str) -> ExpectedThreat:
"""Create a model from a pre-computed xT value surface.
The value surface should be provided as a JSON file containing a 2D
matrix. Karun Singh provides such a grid at the follwing url:
https://karun.in/blog/data/open_xt_12x8_v1.json
Parameters
----------
path : str
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file.
Returns
-------
ExpectedThreat
An xT model that uses the given value surface to value actions.
"""
grid = pd.read_json(path)
model = ExpectedThreat()
model.xT = grid.values
model.w, model.l = model.xT.shape
return model