socr / tests /test_xthreat.py
scfive's picture
Upload 203 files
d6ea71e verified
import json
from pathlib import Path
import numpy as np
import pandas as pd
import pytest
import socceraction.spadl as spadl
import socceraction.xthreat as xt
from pandera.typing import DataFrame, Series
from pytest_mock import MockerFixture
from sklearn.exceptions import NotFittedError
from socceraction.spadl import SPADLSchema
from socceraction.spadl.config import field_length, field_width
class TestGridCount:
"""Tests for counting the number of actions occuring in each grid cell.
Grid cells ares represented by 2D pitch coordinates. The (0,0) coordinate
corresponds to the bottom left corner of the pitch. The 2D coordinates are
mapped to a flat index. For a 2x2 grid, these flat indices are:
0 1
2 3
"""
N = 2
M = 2
def test_get_cell_indexes(self) -> None:
"""It should map pitch coordinates to a 2D cell index."""
x = Series[float]([0, field_length / 2 - 1, field_length])
y = Series[float]([0, field_width / 2 + 1, field_width])
xi, yi = xt._get_cell_indexes(x, y, self.N, self.M)
pd.testing.assert_series_equal(xi, pd.Series([0, 0, 1]))
pd.testing.assert_series_equal(yi, pd.Series([0, 1, 1]))
def test_get_cell_indexes_out_of_bounds(self) -> None:
"""It should map out-of-bounds coordinates to the nearest cell index."""
x = Series[float]([-10, field_length + 10])
y = Series[float]([-10, field_width + 10])
xi, yi = xt._get_cell_indexes(x, y, self.N, self.M)
pd.testing.assert_series_equal(xi, pd.Series([0, 1]))
pd.testing.assert_series_equal(yi, pd.Series([0, 1]))
def test_get_flat_indexes(self) -> None:
"""It should map pitch coordinates to a flat index."""
x = Series[float]([0, field_length / 2 - 1, field_length / 2 + 1, field_length])
y = Series[float]([0, field_width / 2 + 1, field_width / 2 - 1, field_width])
idx = xt._get_flat_indexes(x, y, self.N, self.M)
pd.testing.assert_series_equal(idx, pd.Series([2, 0, 3, 1]))
def test_count(self) -> None:
"""It should return the number of occurences in each grid cell."""
x = Series[float]([0, field_length / 2 - 1, field_length, field_length + 10])
y = Series[float]([0, field_width / 2 + 1, field_width, field_width + 10])
cnt = xt._count(x, y, self.N, self.M)
np.testing.assert_array_equal(cnt, [[1, 2], [1, 0]])
class TestModelPersistency:
def test_save_model(self, tmp_path: Path) -> None:
"""It should save a trained xT grid to a JSON file."""
p = tmp_path / "xt_model.json"
model = xt.ExpectedThreat()
model.xT = np.ones((model.w, model.l))
model.save_model(str(p))
assert p.read_text() == json.dumps(model.xT.tolist())
def test_save_model_not_fitted(self, tmp_path: Path) -> None:
"""It should raise an exception when saving an unfitted model."""
p = tmp_path / "xt_model.json"
model = xt.ExpectedThreat()
with pytest.raises(NotFittedError):
model.save_model(str(p))
model.xT = np.zeros((model.w, model.l))
with pytest.raises(NotFittedError):
model.save_model(str(p))
def test_save_model_file_exists(self, tmp_path: Path) -> None:
"""It should raise an exception when the file exists."""
p = tmp_path / "xt_model.json"
p.write_text("create file")
model = xt.ExpectedThreat()
model.xT = np.ones((model.w, model.l))
with pytest.raises(ValueError):
model.save_model(str(p), overwrite=False)
model.save_model(str(p), overwrite=True)
def test_load_model(self, tmp_path: Path) -> None:
"""It should load a saved xT grid from a JSON file."""
# xT grid
gridv = [[0.1, 0.2], [0.1, 0.0]]
# write to file
p = tmp_path / "xt_model.json"
p.write_text(json.dumps(gridv))
# load model
model = xt.load_model(str(p))
# verify
assert model.w == 2
assert model.l == 2
np.testing.assert_array_equal(model.xT, gridv)
def test_get_move_actions(spadl_actions: DataFrame[SPADLSchema]) -> None:
"""It should filter passes, dribbles and crosses."""
move_actions = xt.get_move_actions(spadl_actions)
assert move_actions.type_id.isin(
[
spadl.config.actiontypes.index("pass"),
spadl.config.actiontypes.index("dribble"),
spadl.config.actiontypes.index("cross"),
]
).all()
def test_get_successful_move_actions(spadl_actions: DataFrame[SPADLSchema]) -> None:
"""It should filter successful passes, dribbles and crosses."""
move_actions = xt.get_successful_move_actions(spadl_actions)
assert move_actions.type_id.isin(
[
spadl.config.actiontypes.index("pass"),
spadl.config.actiontypes.index("dribble"),
spadl.config.actiontypes.index("cross"),
]
).all()
assert (move_actions.result_id == spadl.config.results.index("success")).all()
def test_action_prob(spadl_actions: DataFrame[SPADLSchema]) -> None:
"""It should return the proportion of shots and moves for each cell."""
shot_prob, move_prob = xt.action_prob(spadl_actions, 10, 5)
assert shot_prob.shape == (5, 10)
assert move_prob.shape == (5, 10)
assert np.any(shot_prob > 0)
assert np.any(move_prob > 0)
assert np.all(((move_prob + shot_prob) == 1) | ((move_prob + shot_prob) == 0))
def test_scoring_prob(spadl_actions: DataFrame[SPADLSchema]) -> None:
"""It should return the proportion of successful shots for each cell."""
shots = spadl_actions.type_id == spadl.config.actiontypes.index("shot")
goals = shots & (spadl_actions.result_id == spadl.config.results.index("success"))
scoring_prob = xt.scoring_prob(spadl_actions, 1, 1)
assert scoring_prob.shape == (1, 1)
assert sum(goals) / sum(shots) == scoring_prob[0]
def test_move_transition_matrix() -> None:
"""It should return the move transition matrix."""
pass_id = spadl.config.actiontypes.index("pass")
success_id = spadl.config.results.index("success")
spadl_actions = DataFrame[SPADLSchema](
[
{
"game_id": 1,
"original_event_id": "a",
"action_id": 1,
"period_id": 1,
"time_seconds": 1.0,
"team_id": 1,
"player_id": 1,
"start_x": 10.0,
"end_x": 10.0,
"start_y": 10.0,
"end_y": 10.0,
"bodypart_id": 1,
"type_id": pass_id,
"result_id": success_id,
},
{
"game_id": 1,
"original_event_id": "a",
"action_id": 2,
"period_id": 1,
"time_seconds": 1.2,
"team_id": 1,
"player_id": 1,
"start_x": 10.0,
"end_x": 10.0,
"start_y": 10.0,
"end_y": 10.0,
"bodypart_id": 1,
"type_id": pass_id,
"result_id": success_id,
},
]
)
move_mat = xt.move_transition_matrix(spadl_actions, 2, 2)
assert np.sum(move_mat) == 1
assert move_mat.shape == (4, 4)
# (10, 10) is mapped to flat index 2 in a 2x2 grid
assert move_mat[2, 2] == 1
def test_xt_model_init() -> None:
"""It should initialize all instance variables."""
xTModel = xt.ExpectedThreat(l=8, w=6, eps=1e-3)
assert xTModel.l == 8
assert xTModel.w == 6
assert xTModel.eps == 1e-3
assert np.sum(xTModel.xT) == 0
assert xTModel.scoring_prob_matrix is None
assert xTModel.scoring_prob_matrix is None
assert xTModel.shot_prob_matrix is None
assert xTModel.move_prob_matrix is None
assert xTModel.transition_matrix is None
assert len(xTModel.heatmaps) == 0
def test_xt_model_fit(spadl_actions: DataFrame[SPADLSchema]) -> None:
"""It should update all instance variables."""
xTModel = xt.ExpectedThreat()
xTModel.fit(spadl_actions)
assert xTModel.scoring_prob_matrix is not None
assert xTModel.shot_prob_matrix is not None
assert xTModel.move_prob_matrix is not None
assert xTModel.transition_matrix is not None
assert len(xTModel.heatmaps) > 0
assert np.sum(xTModel.xT) > 0
def test_xt_model_rate_not_fitted(spadl_actions: DataFrame[SPADLSchema]) -> None:
"""It should raise a NotFittedError."""
xTModel = xt.ExpectedThreat()
with pytest.raises(NotFittedError):
xTModel.rate(spadl_actions)
def test_xt_model_rate(spadl_actions: DataFrame[SPADLSchema]) -> None:
"""It should rate all successful move actions and assign all other actions NaN."""
xTModel = xt.ExpectedThreat()
xTModel.fit(spadl_actions)
successful_move_actions_idx = xt.get_successful_move_actions(spadl_actions).index
ratings = xTModel.rate(spadl_actions)
assert ratings.shape == (len(spadl_actions),)
assert np.all(~np.isnan(ratings[successful_move_actions_idx]))
assert np.all(np.isnan(np.delete(ratings, successful_move_actions_idx)))
def test_interpolate_xt_grid_no_scipy(mocker: MockerFixture) -> None:
"""It should raise an ImportError if scipy is not installed."""
mocker.patch.object(xt, "interp2d", None)
xTModel = xt.ExpectedThreat()
with pytest.raises(ImportError, match="Interpolation requires scipy to be installed."):
xTModel.interpolator()
@pytest.fixture(scope="session")
def xt_model(sb_worldcup_data: pd.HDFStore) -> xt.ExpectedThreat:
"""Test the xT framework on the StatsBomb World Cup data."""
# 1. Load a set of actions to train the model on
df_games = sb_worldcup_data["games"].set_index("game_id")
# 2. Convert direction of play
actions_ltr = pd.concat(
[
spadl.play_left_to_right(
sb_worldcup_data[f"actions/game_{game_id}"], game.home_team_id
)
for game_id, game in df_games.iterrows()
]
).pipe(DataFrame[SPADLSchema])
# 3. Train xT model
xTModel = xt.ExpectedThreat(l=16, w=12)
xTModel.fit(actions_ltr)
return xTModel
@pytest.mark.e2e
def test_predict(sb_worldcup_data: pd.HDFStore, xt_model: xt.ExpectedThreat) -> None:
games = sb_worldcup_data["games"]
game = games.iloc[-1]
actions = sb_worldcup_data[f"actions/game_{game.game_id}"]
ratings = xt_model.rate(actions)
assert ratings.dtype is np.dtype(np.float64)
assert len(ratings) == len(actions)
@pytest.mark.e2e
def test_predict_with_interpolation(
sb_worldcup_data: pd.HDFStore, xt_model: xt.ExpectedThreat
) -> None:
games = sb_worldcup_data["games"]
game = games.iloc[-1]
actions = sb_worldcup_data[f"actions/game_{game.game_id}"]
ratings = xt_model.rate(actions, use_interpolation=True)
assert ratings.dtype is np.dtype(np.float64)
assert len(ratings) == len(actions)