{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Disclaimer**: this notebook's compatibility with StatsBomb event data 4.0.0 was last checked on December 30th, 2023." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:20:58.642745Z", "iopub.status.busy": "2023-12-30T16:20:58.642346Z", "iopub.status.idle": "2023-12-30T16:20:59.230358Z", "shell.execute_reply": "2023-12-30T16:20:59.229836Z" } }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import pandas as pd\n", "pd.set_option('display.max_columns', None)\n", "warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning)\n", "warnings.filterwarnings(action=\"ignore\", message=\"credentials were not supplied. open data access only\")\n", "import tqdm" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:20:59.233155Z", "iopub.status.busy": "2023-12-30T16:20:59.232943Z", "iopub.status.idle": "2023-12-30T16:21:00.979524Z", "shell.execute_reply": "2023-12-30T16:21:00.979053Z" } }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "from socceraction.data.statsbomb import StatsBombLoader\n", "import socceraction.spadl as spadl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set up the StatsBombLoader" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:21:00.981790Z", "iopub.status.busy": "2023-12-30T16:21:00.981501Z", "iopub.status.idle": "2023-12-30T16:21:01.202737Z", "shell.execute_reply": "2023-12-30T16:21:01.202128Z" } }, "outputs": [], "source": [ "# Use this if you want to use the free public statsbomb data\n", "# or provide credentials to access the API\n", "SBL = StatsBombLoader(getter=\"remote\", creds={\"user\": None, \"passwd\": None})\n", "\n", "# # Uncomment the code below if you have a local folder on your computer with statsbomb data\n", "# datafolder = \"../data/statsbomb-epl-1718\" # Example of local folder with statsbomb data\n", "# SBL = StatsBombLoader(root=datafolder, getter=\"local\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:21:01.205905Z", "iopub.status.busy": "2023-12-30T16:21:01.205479Z", "iopub.status.idle": "2023-12-30T16:21:01.574481Z", "shell.execute_reply": "2023-12-30T16:21:01.572064Z" } }, "outputs": [ { "data": { "text/plain": [ "{'1. Bundesliga',\n", " 'Champions League',\n", " 'Copa del Rey',\n", " \"FA Women's Super League\",\n", " 'FIFA U20 World Cup',\n", " 'FIFA World Cup',\n", " 'Indian Super league',\n", " 'La Liga',\n", " 'Liga Profesional',\n", " 'Ligue 1',\n", " 'Major League Soccer',\n", " 'NWSL',\n", " 'North American League',\n", " 'Premier League',\n", " 'Serie A',\n", " 'UEFA Euro',\n", " 'UEFA Europa League',\n", " \"UEFA Women's Euro\",\n", " \"Women's World Cup\"}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# View all available competitions\n", "competitions = SBL.competitions()\n", "set(competitions.competition_name)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:21:01.621178Z", "iopub.status.busy": "2023-12-30T16:21:01.620988Z", "iopub.status.idle": "2023-12-30T16:21:01.651574Z", "shell.execute_reply": "2023-12-30T16:21:01.650889Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
season_idcompetition_idcompetition_namecountry_namecompetition_genderseason_name
27343FIFA World CupInternationalmale2018
\n", "
" ], "text/plain": [ " season_id competition_id competition_name country_name \\\n", "27 3 43 FIFA World Cup International \n", "\n", " competition_gender season_name \n", "27 male 2018 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Fifa world cup\n", "selected_competitions = competitions[\n", " (competitions.competition_name == \"FIFA World Cup\")\n", " & (competitions.season_name == \"2018\")\n", "]\n", "\n", "# # Messi data\n", "# selected_competitions = competitions[competitions.competition_name == \"La Liga\"]\n", "\n", "# # FA Women's Super League\n", "# selected_competitions = competitions[competitions.competition_name == \"FA Women's Super League\"]\n", "\n", "selected_competitions" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:21:01.654195Z", "iopub.status.busy": "2023-12-30T16:21:01.654007Z", "iopub.status.idle": "2023-12-30T16:21:02.051515Z", "shell.execute_reply": "2023-12-30T16:21:02.050411Z" }, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
home_team_idaway_team_idgame_datehome_scoreaway_score
07697682018-07-03 20:00:0011
17687822018-06-28 20:00:0001
27907732018-07-03 16:00:0010
37977802018-06-25 20:00:0011
47807882018-06-20 14:00:0010
..................
597967742018-06-19 20:00:0031
607967852018-07-07 20:00:0022
617767712018-06-26 16:00:0000
627787872018-06-24 17:00:0022
637997742018-06-25 16:00:0021
\n", "

64 rows × 5 columns

\n", "
" ], "text/plain": [ " home_team_id away_team_id game_date home_score away_score\n", "0 769 768 2018-07-03 20:00:00 1 1\n", "1 768 782 2018-06-28 20:00:00 0 1\n", "2 790 773 2018-07-03 16:00:00 1 0\n", "3 797 780 2018-06-25 20:00:00 1 1\n", "4 780 788 2018-06-20 14:00:00 1 0\n", ".. ... ... ... ... ...\n", "59 796 774 2018-06-19 20:00:00 3 1\n", "60 796 785 2018-07-07 20:00:00 2 2\n", "61 776 771 2018-06-26 16:00:00 0 0\n", "62 778 787 2018-06-24 17:00:00 2 2\n", "63 799 774 2018-06-25 16:00:00 2 1\n", "\n", "[64 rows x 5 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get games from all selected competitions\n", "games = pd.concat([\n", " SBL.games(row.competition_id, row.season_id)\n", " for row in selected_competitions.itertuples()\n", "])\n", "games[[\"home_team_id\", \"away_team_id\", \"game_date\", \"home_score\", \"away_score\"]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load and convert match data" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:21:02.055547Z", "iopub.status.busy": "2023-12-30T16:21:02.055305Z", "iopub.status.idle": "2023-12-30T16:22:43.544119Z", "shell.execute_reply": "2023-12-30T16:22:43.543385Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading game data: 100%|███████████████████████████████████████████████████████████████| 64/64 [01:41<00:00, 1.59s/it]\n" ] } ], "source": [ "games_verbose = tqdm.tqdm(list(games.itertuples()), desc=\"Loading game data\")\n", "teams, players = [], []\n", "actions = {}\n", "for game in games_verbose:\n", " # load data\n", " teams.append(SBL.teams(game.game_id))\n", " players.append(SBL.players(game.game_id))\n", " events = SBL.events(game.game_id)\n", " # convert data\n", " actions[game.game_id] = spadl.statsbomb.convert_to_actions(\n", " events, \n", " home_team_id=game.home_team_id,\n", " xy_fidelity_version=1,\n", " shot_fidelity_version=1\n", " )\n", "\n", "teams = pd.concat(teams).drop_duplicates(subset=\"team_id\")\n", "players = pd.concat(players)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Store converted spadl data in a h5-file" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:22:43.546172Z", "iopub.status.busy": "2023-12-30T16:22:43.546009Z", "iopub.status.idle": "2023-12-30T16:22:47.205413Z", "shell.execute_reply": "2023-12-30T16:22:47.204805Z" }, "scrolled": true }, "outputs": [], "source": [ "datafolder = \"../data-fifa\"\n", "\n", "# Create data folder if it doesn't exist\n", "if not os.path.exists(datafolder):\n", " os.mkdir(datafolder)\n", " print(f\"Directory {datafolder} created.\")\n", "\n", "spadl_h5 = os.path.join(datafolder, \"spadl-statsbomb.h5\")\n", "\n", "# Store all spadl data in h5-file\n", "with pd.HDFStore(spadl_h5) as spadlstore:\n", " spadlstore[\"competitions\"] = selected_competitions\n", " spadlstore[\"games\"] = games\n", " spadlstore[\"teams\"] = teams\n", " spadlstore[\"players\"] = players[['player_id', 'player_name', 'nickname']].drop_duplicates(subset='player_id')\n", " spadlstore[\"player_games\"] = players[['player_id', 'game_id', 'team_id', 'is_starter', 'starting_position_id', 'starting_position_name', 'minutes_played']]\n", " for game_id in actions.keys():\n", " spadlstore[f\"actions/game_{game_id}\"] = actions[game_id]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the spadl data\n", "Extra library required: ```pip install matplotsoccer```" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:22:47.208063Z", "iopub.status.busy": "2023-12-30T16:22:47.207632Z", "iopub.status.idle": "2023-12-30T16:22:47.497108Z", "shell.execute_reply": "2023-12-30T16:22:47.496574Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
game_idoriginal_event_idperiod_idtime_secondsteam_idplayer_idstart_xstart_yend_xend_ytype_idresult_idbodypart_idaction_idtype_nameresult_namebodypart_nameplayer_nameteam_name
0865784438495-6341-4eba-bf90-82db1f6703fb10.5337823289.052.937533.57544.187533.5750150passsuccessfoot_rightRomelu LukakuBelgium
186576f02abb4-0b81-4531-be11-6bf6ea7e695b11.2527825642.044.187533.57544.187534.42521101dribblesuccessfootAxel WitselBelgium
2865734b355a6-8b5f-4954-8dfd-fcc77df5c40c12.1337825642.044.187534.42531.937553.1250152passsuccessfoot_rightAxel WitselBelgium
3865729b70f75-5970-491c-acc7-5dbfb353200c13.7327823077.031.937553.12528.437553.12521103dribblesuccessfootJan VertonghenBelgium
486578fd1ffd0-b984-4823-ab2c-f249c04adc1214.9337823077.028.437553.12524.062538.6750144passsuccessfoot_leftJan VertonghenBelgium
\n", "
" ], "text/plain": [ " game_id original_event_id period_id time_seconds \\\n", "0 8657 84438495-6341-4eba-bf90-82db1f6703fb 1 0.533 \n", "1 8657 6f02abb4-0b81-4531-be11-6bf6ea7e695b 1 1.252 \n", "2 8657 34b355a6-8b5f-4954-8dfd-fcc77df5c40c 1 2.133 \n", "3 8657 29b70f75-5970-491c-acc7-5dbfb353200c 1 3.732 \n", "4 8657 8fd1ffd0-b984-4823-ab2c-f249c04adc12 1 4.933 \n", "\n", " team_id player_id start_x start_y end_x end_y type_id result_id \\\n", "0 782 3289.0 52.9375 33.575 44.1875 33.575 0 1 \n", "1 782 5642.0 44.1875 33.575 44.1875 34.425 21 1 \n", "2 782 5642.0 44.1875 34.425 31.9375 53.125 0 1 \n", "3 782 3077.0 31.9375 53.125 28.4375 53.125 21 1 \n", "4 782 3077.0 28.4375 53.125 24.0625 38.675 0 1 \n", "\n", " bodypart_id action_id type_name result_name bodypart_name player_name \\\n", "0 5 0 pass success foot_right Romelu Lukaku \n", "1 0 1 dribble success foot Axel Witsel \n", "2 5 2 pass success foot_right Axel Witsel \n", "3 0 3 dribble success foot Jan Vertonghen \n", "4 4 4 pass success foot_left Jan Vertonghen \n", "\n", " team_name \n", "0 Belgium \n", "1 Belgium \n", "2 Belgium \n", "3 Belgium \n", "4 Belgium " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with pd.HDFStore(spadl_h5) as spadlstore:\n", " games = (\n", " spadlstore[\"games\"]\n", " .merge(spadlstore[\"competitions\"], how='left')\n", " .merge(spadlstore[\"teams\"].add_prefix('home_'), how='left')\n", " .merge(spadlstore[\"teams\"].add_prefix('away_'), how='left'))\n", " # Select England vs Belgium game at World Cup\n", " game = games[(games.competition_name == \"FIFA World Cup\") \n", " & (games.away_team_name == \"England\")\n", " & (games.home_team_name == \"Belgium\")]\n", " game_id = game.game_id.values[0]\n", " actions = (\n", " spadlstore[f\"actions/game_{game_id}\"]\n", " .merge(spadl.actiontypes_df(), how=\"left\")\n", " .merge(spadl.results_df(), how=\"left\")\n", " .merge(spadl.bodyparts_df(), how=\"left\")\n", " .merge(spadlstore[\"players\"], how=\"left\")\n", " .merge(spadlstore[\"teams\"], how=\"left\")\n", " )\n", "\n", "# use nickname if available else use full name\n", "actions[\"player_name\"] = actions[[\"nickname\", \"player_name\"]].apply(lambda x: x.iloc[0] if x.iloc[0] else x.iloc[1], axis=1)\n", "del actions['nickname']\n", "actions[:5]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-12-30T16:22:47.499053Z", "iopub.status.busy": "2023-12-30T16:22:47.498850Z", "iopub.status.idle": "2023-12-30T16:22:48.255428Z", "shell.execute_reply": "2023-12-30T16:22:48.254674Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2018-07-14 16:00:00 Belgium 2-0 England 82'\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAFuCAYAAAABAnL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtGElEQVR4nOzdd1gU19cH8O/SWVbAghRFwAYoKgR7AysiCghiF7BgNzYssYFBjYldYyUqxg5GQcGCRrAkqCiiAqIUQaMLFiyAIMje9w9f5scKKmXZpZzP8+zD7pQ7Z4bZmT0zd+7lMcYYCCGEEEIIIYQQUqnkZB0AIYQQQgghhBBSG1ACTgghhBBCCCGESAEl4IQQQgghhBBCiBRQAk4IIYQQQgghhEgBJeCEEEIIIYQQQogUUAJOCCGEEEIIIYRIASXghBBCCCGEEEKIFFACTgghhBBCCCGESAEl4IQQQgghhBBCiBRQAk4IIYQQQgghhEgBJeCEEEIIIYQQQogUUAJOCCGEEEIIIYRIASXghBBCCCGEEEKIFFACTgghhBBCCCGESAEl4IQQQgghhBBCiBRQAk4IIYQQQgghhEgBJeCEEEIIIYQQQogUUAJOCCGEEEIIIYRIASXghBBCCCGEEEKIFFACTgghhBBCCCGESAEl4IQQQgghhBBCiBRQAk4IIYQQQgghhEgBJeCEEEIIIYQQQogUUAJOCCGEEEIIIYRIASXghBBCCCGEEEKIFFACTgghhBBCCCGESAEl4IQQQgghhBBCiBRQAk4IIYQQQgghhEgBJeCEEEIIIYQQQogUUAJOCCGEEEIIIYRIASXghBBCCCGEEEKIFFACTgghhBBCCCGESAEl4IQQQgghhBBCiBRQAk4IIYQQQgghhEgBJeCEEEIIIYQQQogUUAJOCCGEEEIIIYRIASXghBBCCCGEEEKIFFACTgghhBBCCCGESAEl4IQQQgghhBBCiBQoyDqAshKJRHj16hUAgM/ng8fjyTgiQmSHMYYPHz4AoO8DIYD4d6JBgwaQk6PrzIQQQgipOqpdAv7q1Stoa2vLOgxCCCFVXHp6Oho2bCjrMAghhBBCOHRrgBBCCCGEEEIIkYJqdwecz+dz79PT06GmpibDaAiRrezsbK5GCH0fCBH/ThQ9XxBCCCGEVAXVLgEv+oyrmpoaJRyE/D/6PhAijtpEIIQQQkhVQ1XQCSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECSsAJIYQQQgghhBApoAScEEIIIYQQQgiRAkrACSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmgBJwQQgghhBBCCJECBVkHUFYikYh7n5WVJcNIpIsxhg8fPgAAGjRoADk5unZCCPk6kUiEV69eAQD4fD54PJ6MI5KOoueFoucLQgghhJCqoNol4IU/KAFAR0dHhpHITnp6Oho2bCjrMAghVdirV6+gra0t6zBk6tWrV6hTp46swyCEEEII4dBtVEIIIYQQQgghRAqq3R1wPp/PvU9OTq41d4Kzs7O5u1lFtwEhhJSk6HEiPT0dampqMoxGel68eIGmTZsCoGMlIYQQQqqeapeAF32OUU1Nrdb8qCyqtjzLSQgpv9p6rCy6nnSsJIQQQkhVQ1XQCSGEEEIIIYQQKaAEnBBCCCGEEEIIkQJKwAkhhBBCCCGEECmods+AE0IIIaRsCgoKkJ+fL+swCCGEkBpJSUkJcnKlu7dNCTghhBBSQzHGkJaWhrdv38o6FEIIIaTGkpOTg5GREZSUlL47LSXghBBCSA1VmHw3bNgQfD6fWoYnhBBCJEwkEuH58+cQCoVo0qTJd8+1lIATQgghNVBBQQGXfNevX1/W4RBCCCE1lpaWFp4/f45Pnz5BUVHxm9NSI2yEEEJIDVT4zDefz5dxJIQQQkjNVlj1vKCg4LvTUgJOCCGE1GBU7ZwQQgipXGU511ICTgghhBBCCCGESAEl4IQQQgipsdzd3eHt7V2py9i0aRMMDQ0rdRnSEB4eXi3WIzAwkGp2/D8/Pz9YW1tXStnW1tbg8Xjg8XiYMWNGpSyDVF3SOHbWVpSAE0IIIYR8hbu7OwYNGvTNaSZNmoTIyEgpRVSzeXt7w8zM7JvT2NraQigUVmocPB4Px48fr9RlVHUnTpyAUChEly5dZB0KqYZKc+ysragVdEIIIYSQCuDz+dTYnRQpKytDR0dH1mHUePXq1QOAUvVrTAgpPboDTggp0Zo1a8Dj8TB79mxZh0IIIVLn7u4OHo+H/fv3IyQkhKuKW7RK5sGDB7nhJVXd5vF4cHV1hbq6Onx8fNCjRw80aNAA586d46Z5/fo1XF1dUa9ePdSvXx+jRo3Cq1evpLCGknXgwAG0b98ederUgYaGBoYOHYpnz56JTZOdnY1Zs2ZBT08Pqqqq6NixIy5fvgzg851vHo+HFStWIDY2ltuu7u7u3PzXrl3jhn+tCvqxY8dgbGwMJSUlGBsbIyAgQGy8oaEhFi9ejEGDBoHP56N9+/ZITEzkxhct28XFhfuckpICAJg4cSIGDhwoVub9+/chJyeHx48fc8uYPXs2unfvDhUVFXTr1g0JCQli84SFhaFTp05QUVFBixYtsHXr1lJuacnh8Xjw8vJC27ZtoaqqioEDB+LFixelnr+goAATJkyAkZERlJWVYWhoiF9++YUbf+3aNSgoKBSrrWBpaSn2PSrNtigse8aMGdDQ0ICGhoZMthn5vtIcOwsKCrBixQro6+tDIBCgZ8+euHv3Ljc+KSkJDg4O0NbWhoqKCtq1a4fTp0+LLcPOzg6NGjVC165dsWrVKtSpUwceHh7SXNVyowScEFJMZGQkdu3ahbZt28o6FEIIkYnNmzdDKBRi2LBh6Nu3L4RCIYRCITw9Pblphg4dCqFQiJ9//vmr5VhYWGDVqlVYvnw5Zs6ciQkTJmDTpk1iZWRkZODSpUu4fPky3r59C1dX18pctUrx4sULeHp64vbt27h8+TJevHhRbD0mTZqE06dPY8+ePbh//z48PT2RmpoKAPD09IRQKMS8efNgbGzMbe/Nmzdz83fq1AlCoRD79u0rMYYHDx5g1KhRGDduHGJiYjBu3DiMHDkSDx8+FJvujz/+gIeHByIjI5Gfn49FixZx4wqXCwC+vr7cZ319fQCAm5sbLly4IJaoHjp0CD169ICRkRE3bPfu3Zg8eTKioqKgqamJMWPGcOMePXqEgQMHYtSoUYiNjcXmzZuxYsUK+Pv7l2mbS8Lvv/+OX375BdevX8eLFy8wc+bMUs9bUFAABQUF+Pn54eHDh9i8eTNWrlyJAwcOAAC6d+8OQ0NDHDlyhJsnPj4ed+7c4faNsmyL7du3g8/n4/r16zh//jz3PyFVS2mOnT4+Pjh8+DD8/PwQHR2N7t27w8bGBpmZmQCAV69eoUOHDggJCUFcXByGDx+OIUOGcBe5AODdu3c4d+4c4uPjcffuXVy8eBF79+6t9MdTJIJVM+np6QwAA8DS09NlHY7UZGVlceudlZUl63BIFVEZ+0VmZiZr0aIFu3DhArOysmKzZs2SSLlEumrrMaO2niNKkpOTw+Li4lhOTo6sQ5EpNzc35uXlVaH57ezsvjnNxo0bmYGBQbHhANiDBw/YgwcPGACWk5PDzp49y0xNTRljjIWHhzMlJSX2/v17bp74+HgGgAmFwnLHXF5hYWElrkd5nDp1ivF4PJabm8sYYywpKYkBYJcuXfrmfF5eXqx169bfnObkyZOspJ+wc+fOZT/88IPYMEtLSzZv3jzus4GBAZswYQL3ecOGDaxJkybFygLAAgICSlx+s2bN2ObNmxljjIlEItakSRO2Z88esWUMHTqU+/zw4UMGgN27d48xxpi7uzsbMWKEWJmLFi1iNjY2X13nr9m3bx+zsrIq83yMfV5HT09P7vP58+eZvLw8e/Pmjdh0VlZWbPr06aUq08nJiY0cOZL7/PPPPzMLCwvu89KlS1mPHj24z6XdFgYGBqxnz56lioFIRmUdO3Nycpiqqio7d+6c2HBdXV125MiRr5ZXr149tmvXLq7shQsXMsYY69SpE9uxYwdjjDFtbW1248aNcsdcEWU559IdcEKImOnTp8POzg59+/aVdSiEEFLtqaioQEVFRex9Tk4OAODevXvIz8+Hrq4uBAIBBAIBLC0tAQDJyckyi7k87ty5g8GDB6NJkyaoU6cOhg0bBsYYsrOzAQCxsbGQk5NDt27dKi2GxMREtGnTRmxYu3btxKqYA0Dz5s2593Xr1kVGRkaZluPm5oaDBw8CAK5evYqXL1/CxcVFbJqiDcm1aNECioqKSEpKAvD5//7XX39x/3OBQIANGzbI5H9eNM7WrVujoKCAq25fGjt27IClpSUaNGgAgUCAU6dOISsrixvv6uqK6OhoPHjwAABw+PBhsZoRZdkWPXr0KMcakqomISEBOTk5cHJyEvu/p6enc//37OxszJ8/H6amptDU1IRAIMCbN2/E9q0vj6uF7wuPr1UZNcJGCOEcPXoUUVFR1JpvFXL16lUkJiZCS0sLDRs25P6qqanJOjRCSDkxxrj3Ojo6uHLlSrFpGjVqJM2QKiQ7Oxv9+/dH79694e/vjwYNGuDq1asYP348RCKRrMMrRkFB/Odv0f9Habi6usLb2xuPHj3CoUOHMGTIENSpU+e78xVdzuTJkzFr1iyx8YqKimWKo7KUdnscO3YMs2fPxqZNm9CjRw+oqKhg9uzZYv9zAwMDWFtb48CBAxg8eDBXNbmo0m4LTU3Nsq8MqbKCg4OLPUZQ2PCfp6cnzpw5gy1btsDY2BgKCgro0qVLqY4nZf0+ywIl4IQQAMDTp08xa9YsXLhwgbuSSGSroKAAgwYNwvv374uNU1ZWRr169dCwYUPo6upCX18f27dvL/bDkhBSMUpKSvj06VOllN2mTRu8ePECysrK1fp51vj4eLx69Qq//vor1xjdiRMnxKZp3bo1RCIR/v3332/2W12R7d2sWTOuUbdCd+/eLVc/2YqKil+Nw8DAAFZWVti7dy8CAgLEnnEuFBsby71PSEhAfn4+mjVrBuDz//3hw4did+JlpWichbUUvmxQUCAQlHhX8dq1a+jSpQumTp0K4HPi8/jxY7Fn4YHPDWYtX74c7969g4ODA9TV1blxVWlbEMn62ne5RYsWUFFRgVAoRK9evUqc99q1axg3bhwcHBwAAGlpaXj9+nWlxitNVAWdkGokOzsbXbt2Rffu3bF27VrEx8dLrOzbt2/jxYsX+OGHH6CgoAAFBQVcvnwZW7ZsgYKCAgoKCiS2LFI68vLy6N69O+Tl5YuN+/jxI4RCIe7evYtz587B19cX9+/fl0GUhNRszZs3x+3btxEfH4/c3FyxH5QvX75EWloaMjMzUVBQgLS0NKSlpZW6CqS1tTW6desGFxcXXLlyBUlJSQgMDMTIkSMra3UqRZMmTaCsrAxfX188fvwYx48fx7Zt28Smadq0KUaNGoWJEyfi7NmzSEpKwokTJ7B//36x6Zo3b47Hjx/jxo0byM3NRX5+PjcuIyMDaWlpePv2LQBw27uwWuqECRNw584drFmzBo8ePcKaNWtw584dTJw4sczr1Lx5c5w+fRpv3rxBbm5usbtq7u7u2LBhA5SVlUt8ZCs4OBiHDx9GXFwc5syZg/bt23MNm/7000+4fPkyFi1ahLi4ONy9exebNm3Cxo0byxxnRe3duxdnz57F3bt3sWTJEjg5OaFu3bpi01haWiI0NBQxMTFIS0vjvgMtW7bEnTt3cOnSJTx69Ahz587FkydPii3D2dkZr1+/hq+vr1hjdEDV2hZEsr527FRRUcH8+fMxb948BAQEIDk5GeHh4Zg6dSpiYmIAfN63Tp8+jfv37yMqKgqurq416uYQJeCEVCMikQgRERH4559/sGjRIrRv354bd+nSJeTl5ZW77D59+uD+/fuIjo7mXu3bt8fo0aMRHR1dYhJIKt+4ceO+e/GDx+NhxowZsLCwkFJUhNQeHh4e6NixIzp27AhVVVWsXLmSG9ehQwfo6upi+fLl+O+//6CrqwtdXV0cO3as1OWfOHECpqamcHZ2hpmZGZYsWYKmTZtWxqpUGi0tLezfvx9Hjx5Fq1at8Pvvv5fYMvzu3bsxcOBAjB8/HmZmZli9ejUMDAzEphkyZAhcXFxga2sLVVVVsW6FnJycoKuri3HjxgEAt73XrVsH4PNd9oMHD2Lv3r1o3bo19u7di8OHD8PExKTM67Rp0yZERUWhYcOGUFVV5VprL+Ts7AxFRUUMGzasxPPjxIkTsWXLFlhYWODNmzc4dOgQN87Y2Bjnzp3D1atXYWlpiV69euH06dNo1apVmeOsqClTpsDT0xOdOnVCgwYN8PvvvxebZs6cOfjhhx+4/b0wSZo8eTKGDh0KJycndOnSBfLy8sWehQcANTU1ODs7Q11dHf379xcbV5W2BZGsbx07vby8MG3aNCxYsAAmJiZwc3NDbm4uGjZsCADYsGEDNDU10alTJzg5OWHMmDHQ09OT1apIHI9Vh4ryRbx48QLa2toAgPT0dO4fVdNlZ2dDIBAAALKysuj5z1rMwMCgxCvMAKCqqgobGxvY29vD1NQU//77L1xdXdGgQYNyLcva2hrm5uZiXeYQ6So8IRV2zfEleXl5dOzYEeHh4VBSUuKG19ZjRm09R5QkNzeXqw5ak+4clJW7uzsMDQ3F+qAlJQsPD4e7u3uZGuGqrZ4+fQpDQ0PcvHmTazivkKGhIWbMmCHW7VJl8fPzg5+fH8LDw8s8L4/HQ0BAAIYOHSr5wL7Qv39/GBsbU9/d1QgdO8umLOdcugNOSDVjaWkJObmSv7o5OTk4ffo0xo8fDxcXF8ybNw+NGjXCyJEjERYWVi0apiDiXrx48dXkW05ODvXq1cOJEyfEkm9CCCGVIz8/H0KhEIsWLYK5uXmx5JuIe/PmDf766y/8/fffYrUZCKnNKAEnpJqxsLD4agIOgKuu/ObNGwBAXl4ejh49it69e6Nly5b47bff8OLFi1ItKzw8nO5+y8g///wDHo9XrHpmUXJycggKCoKOjo4UIyOEkNrrn3/+gZ6eHqKiorBv3z5Zh1PlWVhYYPz48fjtt9+4Z+AJqe2ouVxCqrhPnz7hxIkTWLdu3Xe7B5OTk4O8vDwOHDiAdu3a4Y8//sD+/fvx6tUrAJ/7SF24cCGWLFkCR0dHeHh4oG/fvt9M6Il07dmzp1iDQbdu3YKLiwseP34sNnzLli3o0qWLNMMjpNpxdHSk7otKydDQELNnz5Z1GFWatbX1d2uTSbMKv7m5Odzd3cs1rzRqxdHjDNUXHTsrDz0DXk3U1uc5ayOhUIitW7di3bp1Yq2/fo+8vDwEAgGCg4PRvXt3bvjHjx8RGBgIX19f/P3338XmCwoKgr29vURiJ+UjEokwe/ZssWfjmjVrhmvXrnF3t1euXAkvLy+IRCLIyclh7Nix2LdvH3g8Xoll1tZjRm09R5SEngEnhBBCpIOeASekmmCM4dKlSxg4cCB4PB54PB709PTwyy+/cMm3iooKli5dCqFQCMYYRCIRl1gVpaenh8jISLHkG/jcX/Tw4cNx8eJFJCYmYtGiRVyCoq2tDVtbW7HpX758SV2OSUlmZiasrKwgLy/PJd/Ozs7Izc1FYmKiWNXysWPHQiQSAQDMzMywY8eOrybfhBBCCCGkaqIEnJAv/PLLLzAwMIC8vDzk5OSgqKgIc3NznD17tsJlv3//Hhs2bICenh54PB7k5OTQp08fsbI7d+6M48eP49OnT2CMIScnBz4+PlwyxuPxYG5uXqzsK1euoEWLFt9cfrNmzfDLL7/g6dOn+Ouvv7BmzRooKiqKTTNx4kQYGRnB29sbT58+rfA6k+KSk5OhoaEBdXV1XLlyBQDg4+MDkUiE48ePQ1lZudg8BgYGsLGxgaamJk6dOgVVVVVph00IIYQQQiqIqqBXE7W1Oml55efnIyQkBPHx8cjKyoJAIICJiQns7OyKJZxfGjBgAExMTGBsbIxGjRph/fr1iI6ORk5ODu7cuYPWrVuXOo67d+9i/fr1OHDgwFenmTJlCubMmYOWLVuWutxZs2Zh69atYs9vSWK/ePbsGQwMDLg74HJycrC1tYWHhwfs7OygoEDNRlREWFgYevfuLTbs5MmTcHR0LHUZ+fn5392Hgdp7zKit54iSUBV0QgghRDrKcs6lX9OkRnn+/Dl27dqFXbt9kZ4mBF9dAyqqAuTmZOHD+3fQ1tHF5EkemDx5MvT09Eos49y5c2Kfu3TpgoYNG6JOnTq4fv36VxPwvLw8HDlyBOvWrUNMTEyJ0zRv3hyenp5wdXWt0B3Mnj17Yvv27Zg2bRq2bNlS7nK+lJmZCVtbW5w5cwYikQgikQghISEICQmBnp4exo0bh4kTJ8LQ0FBiy6wNduzYgWnTpokNu3fvHtq0aVPmskqTfBNCCCGEkKqJ7oBXE7X1blZZhIeHw8HBER8/fUKb3g5oP2gktI2MufHpjx/iVvAR3L8UBGUFBQQFBcLa2vq75T58+BAmJiZQVFREdHQ0WrVqBQBITU3Fpk2bvtlN19ChQzFv3jx07ty5oqtXTFZWFng8XqXsF//99x/27t2LP/74o1g1dB6Ph379+uHkyZPg8/kSWV5NVFBQgGnTpmH37t3csNatWyMsLAxaWlqVvvzaesyoreeIktAdcEIIIUQ6qBE2UuuEh4ejv40NtJqbYdaf4bCb6S2WfAOAtpEx7GZ6Y9af4dBq3hr9bWwQHh7+1TLv378PgUAAU1NTyMnJYfHixZg+fTrXWJqhoaFY8q2pqYmVK1fi1atXYIyBMYaAgIBKSb4BlNgQm6Q0btwYy5cvx+PHj3HmzBk4OjpCXl4ewOeG4969e0fJ91e8ffsWnTp1goKCApd8jx49Gh8/fkRMTIxUkm9CCCGEEFI1UQJOqr3nz5/DwcERTcw6YOTPu6BaR+Ob06vW0cDIn3ejiVkHODoOwfPnz4tNk5GRgZMnTyIvL49reXzFihViCbu1tTWCg4NRUFAAxhjevHmDJUuWoH79+pJeRZmRl5eHra0tTp48iadPn2LVqlUwMjLCpEmTxKZjjGHChAk4duwYPn78KKNoZevRo0dQVlZG3bp1cfPmTQDA2rVrwRjDwYMHoaSkJOMICSGEEEKIrFECTqq9Xbt24eOnT3BevAnyiqVLcuQVleC8eBNy8/Kwe/du3LhxAy4uLtzd7fr168PLy0usH259fX2MHDmSu7sdFhYGOzs7yMnVjq+Rrq4uFi9ejMTERIwdO1Zs3L///ou9e/dixIgRaNy4MTw9PfHw4UMZRSpdoaGh4PF4MDY2Rl5eHgDgzJkzYIzB09NTxtERQgghhJCqpHZkDqTGys/Px67dvmjT2+G7d765eT7m4lbIUfzx41B8zPmAFStWcF1/FapXrx40NTURExPDJdzNmzenu5gA1zVbUSdPnuTev3r1CuvXr4eJiQmsrKxw8OBB5OTkSDvMSrdx40bweDzY2NgAABQUFPDgwQMwxor1rU4IIYQQQghACTip5kJCQpCeJkT7QSO/Os3rZykI3uKFFTYtscKmJVbbt0XIluXIeJ7KTWNlZYU7d+6AMYapU6ciOzsbK1aswIcPHxAWFoaZM2ciPDwco0ePlsZqVTtr167FpUuXMHLkSLGLFFeuXMHYsWPRqFEjzJo1C7GxsTKMsuLy8/Ph5uYGHo+HuXPnAgDat2+PjIwM5Ofnw8TERMYREkIIIYSQqoy6ISPVWnx8PPjqGsUaXCsU8ddehO5eIzZMUE8LXZzH4wfbYVBRq4O1Q9vD1tYW5ubmAD53GQV87mu7KE9PT/Tr10/yK1ED8Hg89OrVC7169cKrV6/w559/wtfXF/Hx8QCAN2/eYMuWLcjIyPhmn+hV1evXr9G7d2/cu3ePGzZx4kTs2LGD+kYnhBBCCCGlRnfASbWWlZUFFdWvtwbe0WEs+nksxNg1flh+7iG8zj/CvCP/oOvQCVBRqwMAUOYLkJmZyc1TWOX8y9fatWsrfX1qggYNGmDu3LmIi4vD1atXMXbsWK47Bg8PD7FpP3z4gOjoaBlEWTpxcXHg8Xho0KABl3xv2bIFjDH4+vpS8k1IJZoyZQoEAgEEAgFat24tNu7q1avcOIFAgKtXrxabv3Xr1tz4KVOmFBu/evVqsTK+9OTJE7Hxhw4dKjaNra0tN76kR08OHTokVsaTJ0+KTVN0/OrVq8u0HWhb0LagbUHbgraF7LZFeVE/4NVEbe3T93vWrFkDn1/WYH5AZLnLWDu0PZYvWYyFCxdKMDLpqC77xZs3b3Dy5EmMGzcOPB6PG+7n54dx48ahQ4cO8PDwwIgRI1CnTp1yLSM/Px8hISGIj49HVlYWBAIBTExMYGdnV+yZ9S95e3tjxYoV35zm4sWL6NOnT7lik4Xqsm9IWm09R5SkuvcD/uLFC7x//x4AoKioCAMDA25cTk4Onj17xn1u1KgRVFVVxeZPTU3lGtJUV1cvti9kZGQgIyOD+9y8eXOx8Z8+fUJKSgr3WVtbu9jx6dmzZ1wbF6qqqmjUqJHY+MzMTKSnp3OfDQ0Ni124S0xM5N7Xq1cP9erVExv/re0A0LYoirbF/9C2+B/aFv9D2+J/JLEtiirLOZcS8Gqitv6Y/p7AwEAMGTIEU3ae/mo19G9JT47Hzqn2CAwMhIODQyVEWLmq+37RtWtXREREcJ8FAgFGjhyJSZMmwdLSUixZ/5rnz59j165d2LFrN16mp0FRtQ7klFQhystBfk4mtLR1MHXyJEyePBl6enolluHt7Y2AgAA4OjqKXUUVCAS4c+dOsZNLdVDd943yqq3niJJU9wScEEIIqS7Kcs6lKuikWrOzs4O2jg5uBR8p1/yRwUego6uHgQMHSjgy8j2MMbi6unLP3gOfE0VfX1906NABlpaW2LFjB969e/fVMsLDw2FsYorVa9Yiq15b1HNah3qj90LTZRvqjd6Lek7rkFWvLVavWQtjE1OxftwL5eXl4fjx44iLi+OS7+7du+Pdu3fIzMyslsk3IYQQQgipmqpdAi4Sibj3WVlZyM7OrvArKysLL168wIsXL8TKJ1Xfs2fPoKiggOjQE8jJ/HqiVpKczHeIuRSEyZM8vltFmUgej8fDlClTEBUVhcjISEyaNEnsWaI7d+5g2rRp0NPTw6lTp4rNHx4ejv79bfBJwwh1h2+HejcPKNYTr16kWM8A6t08UHf4dnzSMET//jZcEv7ixQuYmJhAWVmZa52dz+fD0NAQTZo0wdu3bytt3clnIpGIO/ZK8nhetHxCCCGEkKqk2lVBj42NhZmZWaWVX1WrLNbW6qTf06JFCyQmJoInJweDth0xZuUfkFf8fl/dBfl5OLJ8El4lxSEuLvarVZOrkk+fPiEmJgYRERG4fv06kpOTkZWVxTViZmxsDDU1NfD5fDRt2hSdO3dGly5dYGZmVm0aC8vKysLRo0fh6+uLmzdvAvjc73hqaioaN27MTff8+XMYm5jik4YR1PstBE/++xdQWEE+3l/4FXJvkvAhO0ts3MyZM9GjRw8YGxtDKBRixYoVePbsGWJiYsr9TLqsVYdjRtHq4pUhJiamxIZXaguqgk4IIYRIR1nOudXjVzkhX+Hi4oI1a9YAjCHl7g0cXDoRw5ZuhWodja/Ok5P5Dn+tnoUnMbdwITS0yibfnz59QmhoKK5du4aIiAhERkYiOzsbCgoKMDc3h6mpKRQVFbkEvF+/fsjPz8eHDx8QGxuLw4cP49OnT1BTU0PHjh3RuXNndO/eHf3796+yCblAIMDEiRMxceJE3L17F76+vnj37p1Y8g0Ao0ePxoecj6jvOLtUyTcAfHwShdz/7ooNu3z5Mnr27Ck2rG3btujUqRMMDAzg7++PCRMmVGylCCGEEEII+X/V7g54cnIymjVrBuDz3Q1DQ8MKl5mdnc3dhcnMzCyxSX1Zqw53s2TlypUrGDt2LJ4+fQrweJBXUEK7fkPQYfAosYbZ0pPjERl8BDGXgqCipISgoEBYWVnJMPKSZWdnY8+ePdi4cSNSUlKgo6ODLl26cHe0LS0twefzuWm/tl98+PABt2/fRkREBPdKT0+HoaEh5syZgwkTJlTL/ejDhw+oo64B5Za9od7N45vTMsaQfec4sqP8/zdQThH162lC+PzZNx896NChA/r27YtffvlFUqFLVXU4ZmRlZXE1DNLT0yUSY0pKCldLKikpCU2bNq1wmdUV3QEnhBBCpKNG3wEv2ioyn8+X+I/K0rS6TKqWnj17IjY29vMPecbwKS8Xd87543bIESip8sEXqCMv9wM+ZL6Hjq4eFi2Yj0mTJlW5O98vXrzA1q1bsW3bNrx//x7Dhw/HX3/9BQsLi3Ltl3w+Hz169ECPHj0AfE5G79y5g/Xr12Pu3LlYsWIFpk2bhpkzZ1bJxy6+xtfXF6KCT1A17f/VadinPLwL24SPqf/rnk5Jzwwa/Rag4P0LvD7piTNnzny15fusrCwkJSVh7NixEo+f/E/R/VpNTU0ix/PCi1Nflk8IIYQQUhVUu0bYCClJZmYm915PTw/4/4odeTkf4OI4GMuXLEZgYCCepKbA29u7SiXf6enpmDJlCpo0aYKNGzfCzc0NSUlJOHToEH744QeJJRE8Hg8//PADDh06xCWXGzduhIGBAaZMmSLW32JVlpOTA0XVOsUaXAMAlp+Ld2Gb8cJvNJd8880GoeGEY6g70AtyiqpQrG8ARRUB4uPjufk8PT1x+fJlpKSk4N9//8WQIUMgLy+PkSNHSm29CCGEEEJIzVft7oATUpLChPrq1ato27Yt5s6diz179gAAvLy80KhRI1mG91UXL17EmDFjUFBQgOXLl2Pq1KmoW7dupS/XwMAAmzZtwvLly7Fz505s3LgRQUFBOHjwIPr06VPpy6+IrKwsyCmpljiOFeShIOs1AEC953SotrQucTo5JVWxizb//fcfRo4cidevX0NLSwvdu3fH9evXoaWlJfH4CSGEEEJI7UUJOKn27ty5w73v3r07AOCPP/7A0KFDkZGRAV1dXVmF9lWfPn2Ct7c3Vq9ejb59++LAgQOV2hr019SrVw+LFy/G+PHjMXbsWPTr1w+LFy+Gt7d3lW6oTZSXU+I4ORV11Bv883fLEOXliLVufvToUYnFRwghhBBCyNdUzV/YhJTBDz/8AAB4/Pix2PABAwbIIpzvevr0KUaOHInr169j1apVWLhwIeTkZPs0iI6ODs6fP481a9Zg+fLluHz5Mg4fPgx9fX2ZxlUSExMT5OdkIj8jtcRq6N+T/zoV+blZMDExqYToCKl58vPzERISgvj4eGRlZUEgEMDExAR2dnbfbMiQEEIIIcVRAl4NpaamolWrVrIOo0o4fvw4gM9VqiXRIn5lCw4OhpubG9TU1HD58mV069ZN1iFx5OTksHjxYlhZWWHkyJEwNzfH/v37MWjQIFmHJsbOzg5a2jrIehAKxe+0gl6SnAfn0VBHFwMHDqyE6KqO1NRUWYdAqrnnz59j165d8PX1hVAohKZmXajVqYPszEy8ffsGurq68PDwwOTJk6tUuxqEEEJIVUaNsFVDvXr1EmtAqjZzcXEBANy/f1/GkXzfsWPH4ODggO7duyM6OrpKJd9FdevWDdHR0ejevTscHBzg7+///ZmkSFFREVMnT0J+0lWIPmaVaV7RxyzkJV/F1MmTavSdu/j4ePTq1UvWYZBqLDw8HK1atcL6DRvQ13YwQq/dxv3kNFy/m4D7yWkIvXYbfW0HY/2GDWjVqhXCw8NlHTIhhBBSLVACXg3Vr18fffv2LVblurZZsWIFAGDIkCFiz/NWRUFBQRg9ejRGjRqFEydOoF69erIO6Zvq1auHEydOYOTIkRg9ejSCgoJkHZKYyZMnQ0VZEZlhm8AK8ks1DyvIR2bYRvBVlDFp0qRKjlB2Hj9+jL59+6JBgwayDoVUU+Hh4bCxsUE7i/a4fi8Rq9dthWkrM7FpTFuZYfW6rbh+LxFtzS1hY2NDSTghhBBSCpSAV0OnT5+GiooK+vbti+fPn8s6HJkoKCiAt7c3gP9VQ6+q/v77bwwbNgxOTk7Yt28f5OXlZR1SqcjLy8PPzw+Ojo4YNmwY/v77b1mHxNHT08PpU0EoSH+A9xd+/e6dcNHHLLy/sAYF6fE4fSqoxlaXffbsGfr06QNVVVWcOnVK1uGQauj58+dwdHRE5649sO9oIDQ1v90rg6ZmXfgdC0Lnrj0wZMiQKnlOcnd3584X5NvCw8OrxeNc5H/8/PxgbW1dqcuIjo4Gj8dDSkpKpS6HVC2yPHa6u7uDx+OBx+NV+FHIwMBAiXXpKymUgFdDOjo6+Pvvv5GXl4f+/fsjK6ts1XBrAmdnZwCAj4+PzBsw+5YHDx7A2dkZvXr1wsGDB6tsy+Jfo6CggEOHDqFXr15wdnauUo8+WFtbIzT0PBTfp+CN/zS8v7Yb+Rnizz3nv07F+2u7kXFsKhTfp+LChVBYWVnJKOLKlZmZCRsbG3z69AkXL16Ejo6OrEMi1dCuXbvwqaAA2/YegpKSUqnmUVJSwra9h5CXn4/du3dLJI64uDg4OzujcePG4PF4MrvQGhQUBHNzc/D5fOjr6+Onn35CQUEBN/7q1asYNGgQtLS0wOPxcOvWrTIvw9fXFz179oSamhoEAkGx8YU/Qr98BQQEVGjdSO02cOBADB06tNjw1q1b48cffxQbZmZmBqFQWCUbZi2UkpJS7u+gn59fse/e2bNnwefzcfjwYUmFWGv4+flxxyl5eXno6+tjxowZ+PDhQ6nL2Lx5M4RCIYYNG1bheGxtbSEUCitcjiRV3cyFfJOBgQFCQ0ORkpKCqVOngjEm65Ck5v3791yV6KVLl8o4mq979eoVBg0ahMaNG8Pf37/UP2arGiUlJRw7dgyNGzfGoEGD8OrVK1mHxLG2tkb8gzgsWbQAgjf3kXHCExkHx+Gt/zRkHByHjJOeqPM2Bkt/Woj4B3E1NvlmjGHKlClITU3F+fPnYWBQ9tbhCcnPz4evry+cho367p3vL2lq1oXTsFHw9fVFfn7pHgv5lqysLDRt2hSbNm2qcFnllZiYCBcXFzg7OyM2Nha+vr7YuXMnNm7cyE3z/v17mJubY9WqVeVeTlZWFgYNGoQpU6aUOF4oFIq9du/eDTU1tSrb0wepHuzs7BAeHi72+zE9PR1xcXHF7jgqKChAR0en2tTgq6iwsDAMHToUv//+O0aNGiXrcKolPp8PoVCIp0+f4tixY7h48SJ++umnUs+voaEBHR0dqKqqVjgWZWXlKndTghLwaszU1BS7du3CwYMHsXfvXlmHIzWtW7cGAJw4cULGkXwdYwxjxoxBZmYmgoODoa6uLuuQKkRDQwOnT5/G+/fvMWbMmCp1wUdPTw/e3t549vQJAgMD4eO9FJ4zJ8HHeykCAwPx35NUeHt719hq5wCwZ88eHD58GLt374apqamswyHVVEhICIRCIcaOn1yu+V3HT8bz589x5syZCsfSsWNHrF27tsQ7dNJy584diEQiLFmyBEZGRhgwYAD69u2L27dvc9PY2dlh5cqV6N+/f4ll8Hg8uLq6Ql1dHT4+PujRowcaNGiAc+fOcdPMmTMHCxYsQJs2bUosQ0dHR+x18uRJDB06VKztk0uXLqF9+/bg8/nQ0tKCvb098vLyJLQlSsfQ0BCzZ89G9+7doaKigm7duiEhIYEbn5SUBAcHB2hra0NFRQXt2rXD6dOnxcpISUmBnZ0dNDU1oa6ujm7duiE2NpYbzxjDsmXLoK+vDxUVFbRo0QK///671NaxJhk0aBBev36Nu3fvcsMuXboEgUDAVWn/77//xGpdfFkFvfCus6+vL9q1aweBQIChQ4cWu9MZFRWFfv36QU1NDfXr18fIkSORmZnJjQ8LC0OnTp24/+nWrVvF5ufxeFi/fj26d+8ONTU19OnTBy9fvhSLwcjICADQoUMHLt7yiIiIgL29PdauXYvx48dzw0UiEZYuXQpdXV2oqKigR48euHfvHjfe2toazs7O0NLSgpOTE2bNmoU6depw7RUBkvmOfGtbPHnyBHJycrh586bYPM7OznB3dy/X9igvHo8HHR0d6OnpoWvXrrC3t8f169e58QUFBVixYgX09fUhEAjQs2dPsX2xNCIjI9G2bVuoqqpi8ODBmDBhgtjjGNeuXRPbf78UHh4OHo8ndmPJ2toaM2bMAAB4e3vDysoKLVu2hKmpKTZv3gwNDQ3Y2dmJ1YQqD0rAq7nRo0fDw8MDM2bMQExMjKzDqXTJycn477//AHxufK2qOn78OM6fP4+9e/fWmOfpjIyMsHfvXpw/fx5//fWXrMMpRlFREQ4ODli4cCFWrlyJhQsXwsHBoUa3dg587gFg5syZmDRpEkaOHCnrcEg1Fh8fD03NusUaXCst09ZtoKGpWaUeVamIDh06QEFBAf7+/mCMITk5GREREWXuwtDCwgKrVq3C8uXLMXPmTEyYMKHcd/afPHmC8+fPiyUGBQUFcHZ2RpcuXRATE4OLFy+iS5cuEIlE5VpGRezevRuTJ09GVFQUNDU1MWbMGG7cq1ev0KFDB4SEhCAuLg7Dhw/HkCFDxBqUnTlzJjIzM3H16lXcunULHh4eYjUqTpw4gXXr1mHHjh2Ij4/Hrl27Sqy2T77PwMAArVu3xqVLl7hhly5dQr9+/bgae3p6ehAKhbh48eI3y9q5cyf27NmDU6dO4dy5c2I3hV6+fIk+ffpAW1sb//zzDy5duoSWLVvi3bt3AIBHjx5h4MCBGDVqFGJjY7F582asWLGiWA8s27dvx8qVK3H58mU8fPgQv/76KwBAX18fQqGQSzrPnTvH1RYpq6ioKNja2mLFihWYNm2a2DhfX19s2bIF27dvR1RUFPT09ODo6Ci2fyooKCA4OBhBQUGQk5PDgQMH8Ntvv4l9Fyv6HfnWtmjSpAn3yGOhd+/eISQkBG5ubmXeHpIiFAoRGhqKH374gRvm4+ODw4cPw8/Pj+t5x8bGRuzCzLfk5+fD2dkZZmZmiIqKgo2NDQ4cOCA2TadOnSAUCrFv375yx/7s2TMEBQVBJBIhICAA//zzD/79919ERkaWu0wAAKtmkpOTGQAGgCUnJ0ukzKysLK7MrKwsiZQpad+K8cOHD6x169asS5curKCgQEYRSkfhNrhz546sQ/mqzMxM1qhRI2Zvb1/py5LFvjt48GDWuHFjlpmZKZXlka8rKChgnTt3Zq1bt2YfPnwQG1fdj2vlVRnniOoqJyeHxcXFsZycnFJNv2TJEtZIvwl7mvGx3K9GjfXZkiVLJLoeAFhAQEC553dzc2NeXl7lmvfy5cusYcOGTEFBgfF4PLZy5coSp3v8+DEDwCIjI8WGA2APHjxgDx48YABYTk4OO3v2LDM1NS1Wxr59+5iamto34/Hy8mItWrQQG/bq1SsGgIWEhJRx7YoLCwtjBgYG5ZrXwMCADR06lPv88OFDBoDdu3fvq/PUq1eP7dq1i/tsZmbG5s+f/9Xp161bx3R1dVl+fn65YqyJ9u3bx6ysrMo178KFC5mdnR33uWnTpmzPnj3Fprtz5w4DwB4/fiw2vHC/P3DgADfM3t6eubq6cp+XL1/OmjZt+tX/mbu7OxsxYoTYsEWLFjEbGxvuMwDm4+PDff7xxx9Zz549S4zly+9gaezbt48pKiqyBg0aMHl5eXb79u1i0/zwww9s7ty53OfXr18zJSUldvr0acYYY1ZWVmzHjh2MMca0tbXZ2bNnWU5ODgPA0tPTGWOS+Y58b1v8+eefrGHDhtz2/uOPP5iBgQETiURl2iaMlf/YuW/fPgaAqampMVVVVQaA9enTh2VnZzPGPp+bVFVV2blz58Tm09XVZUeOHCkWQ9F9tNDp06eZoqIie/36NTesc+fOJX4XTp48yUpKecPCwhgA9vLlS26YlZUVmz59OmPs8/F2+PDhjDHGhg8fzhYuXMgYY6xTp07s2LFjxcoryzmX7oDXAKqqqvj9998REREhdtWrprly5QqAz9VazM3NZRvMN/j4+OD169cyfXaxMm3evBmvXr3CypUrZR1KrXfgwAFcv34d27Ztk8hzUqR2EwgEyC7l3YevycrKrPLdQpZWeno6V8Ps9u3b8Pf3x9atW7F///4ylaOiogIVFRWx9zk5OWWORyQSYe/evRg3bpzY8Pr168PFxQUuLi4YMmQIfv31V6Smpn6llMplZva/2hMtWrSAoqIikpKSAADZ2dmYP38+TE1NoampCYFAgDdv3og1JDt58mRs3LgR1tbWWLx4cbGqtEOGDAFjDC1btoSHhwcOHjwo9ar2NcmgQYNw9epVFBQUIDU1FY8fP4adnV2Zy2nevDn3vm7dusjIyOA+x8TEoEuXLl9thPbevXv466+/IBAIuNeGDRuQnJxc6mVIQn5+PqZNmwYHBwe4urri48ePYuMTExPFHhOpV68eGjdujMTERG7Yl9/zws9Fv+8V/Y4A394Wzs7OyMnJQWhoKADg0KFDGDNmjNRbAefz+YiOjkZ0dDRCQ0Px7t07TJ8+HQCQkJCAnJwcODk5if3f09PTi/3fvyYhIQF6enpi3foWPqIqSV/+Twvfl+cYXhQl4DWEtbU1hg0bhgULFuD9+/eyDqdSFDagVdVaMizqwYMH2LBhAxYvXsw9j1TTGBkZ4aeffsL69evx4MEDWYdTa7179w4LFy7E8OHDa2zjckS6TExM8PbtGzyIK9/jTA9i7+Pd27cwMTGRcGSysWPHDqirq2PZsmVo27Ythg4dilmzZmH16tUVLpuVox2Nc+fO4fnz5yVWJfX398eVK1fQrVs3+Pv7w8zMTCwxkKXCdfX09IS/vz/WrFmD69evIzo6GvXr1xernjtjxgwkJiZizJgxiIuLQ+fOnXH06FFufNOmTZGUlITNmzdDXV0dM2fOhIODg9TXqaYoTIwjIyO5dgS0tbXLXM6XyXVZ9+/JkydzyVp0dDRiY2Nx4cIFiS7je9TU1LBixQps374dQqFQoo38fi/WsnxHgG9vCz6fj6FDh+LgwYN49uwZLl++DFdXVwmtSenxeDw0b94cLVu2RL9+/bB582b4+fkhLS2NmyY4OFjs//7w4cOvNkZZWTF+qbSP7lR0/6MEvAZZt24dMjMzK9Qaa1X1xx9/AAAsLS3LdXKQBsYYZsyYAUNDQ8yfP1/W4VSqBQsWwMDAADNnzqxSDbLVJqtWrUJmZibWrVsn61BIDWFnZwddXV0c2LurXPP/uXcX9PT0yvyMdFX15s2bYj/QFBQUKnzno7x8fX1hY2Pz1QYlLS0t4enpievXr0NeXh5///23lCOEWINpCQkJyM/PR7NmzQB8bhBp3LhxcHBwgImJCQQCAV6/fl2sDAMDA0ycOBGBgYEYMGAA1+tJIT6fj8GDB2P9+vXYtWsXzp07h9zc3MpdsRpKXl4eAwYMwKVLl3Dp0qUK97dcEjMzM0RERHy10ao2bdrg4cOHaN68udirrL15FD63/unTpwrFq62tjS1btmDDhg24du0aN7xZs2a4f/8+9zkjIwP//fef2N3o0pDEd+R73N3dERQUBF9fX3Ts2BEtW7YscxmSVlhLLysrCy1atICKigqEQmGx/3vRO9rA55pZJR1zW7RogefPnxerbVEWmpqaXEyFnj59WqYyyosS8BpEX18fc+bMwbZt28r1ha2qGGPw8PAAALGDYVUTGBiIS5cuYevWrVw1lZpKRUUFW7duxd9//43AwEBZh1PrvH79Gtu3b8ecOXPQuHFjWYdDaghFRUV4eHjghP9hvH37pkzzvn37Bif8D8PDw0MiDR/m5eVxd0WAzy0dR0dHi909qWw2NjaIjIzE+vXrkZycjAsXLmDz5s1iSUpWVhaio6MRFxcH4HODUtHR0WWqHpuWlobo6Gg8efIEIpGIW++iVavT0tIQHBws1vhaoSdPnmDRokWIiIhAamoq/vzzT7x///6rrapXpuDgYBw+fBhxcXGYM2cO2rdvj7Zt2wIAWrZsidOnT+P+/fuIioqCq6trsXPl3Llzcf78eTx+/BhhYWG4ffu22HocOHAAe/bsQVxcHOLj43Hs2DHuxzwpHzs7O1y6dAlhYWHFEvB3794hLS2N+0358uVLpKWlcQ2olcaMGTOQkZEBd3d33L17FzExMZ97Lnn2DADw008/4fLly1i0aBHi4uJw9+5dbNq0Say7v9LQ1taGQCDAyZMn8f79+wpdlBk9ejTs7Ozg5ubGJWceHh7w9fXFyZMn8eDBA0ydOhW6urqwsbEpU9kV/Y6URo8ePaCjo4PVq1eLNfImTYwxpKWlQSgU4tatW1i0aBGaN2+Opk2bQkVFBfPnz8e8efMQEBCA5ORkhIeHY+rUqcWSaEtLS9y4cQMRERFIS0vjHg2wsbGBjo4Opk+fjgcPHmDbtm3FWlHPyMhAWloa3r59C+DzcTQtLY37n7Zo0QLq6uoICAgAABw5cgRPnjyp5C3zGSXgNcysWbMgEomwbds2WYciMbNmzQLw+eBXlU+yO3bsQPfu3WtN36y2trbo1q0bdu7cKetQap3ff/8dIpGI+24QIimTJ0+Ggrw8po8fXepna/Py8jBt3CgoKSpi0qRJEonj+fPnsLCwgIWFBQBg/vz5sLCwkOrxZuDAgdizZw/27dsHMzMzjB8/Hi4uLli7di03za1bt2BhYcE9Nzt69GhYWFjg1KlTpV7Ozp07YWFhAS8vL+Tk5HDr/fz5c26affv2QVNTE/b29sXm5/P5ePjwIZycnGBsbIy1a9di165d6Nq1awXWvnwmTpyILVu2wMLCAm/evMGhQ4e4cRs2bICmpiY6deoEJycnjBkzptjd/IKCAkyfPh2mpqYYM2YMRo0aJVajTENDA76+vujcuTM6deqEzMzMKt0laXVga2uLq1evgjEm1ko18Pn3l66uLvr27Qvgc/eAurq6ZTr3aGlp4e+//0ZaWhq6du2Knj17Ii4ujuue1djYGOfOncPVq1dhaWmJXr164fTp02jVqlWZ1kNeXh47duyAv78/6tatW+F2UXbu3ImMjAx4enoCACZNmoQZM2ZgypQpMDc3x3///YfAwMAyX3Cs6HekNHg8HsaOHQvGGIYNG1bm+SXhw4cP0NXVRePGjWFvbw8NDQ2cPXsWcnKfU08vLy9MmzYNCxYsgImJCdzc3JCbm4uGDRuKlTNmzBgMHToU/fv3h66uLs6ePQvg8wXj48ePIyYmBhYWFggNDcXIkSOhrKzMzevk5ARdXV2u3QxdXV3o6upyNQf5fD62b9+OTZs2QU9PDxEREejWrZs0Nk/VbAW9oKCApaens/T0dJaZmcmysrK41/3797kWbhMTEyWyvJrWWvDUqVOZtrY2+/jxo5SiqzwfP37k1rs8LThKy5MnTxiPxyux9dDKJOt9948//mA8Ho89ffpU6suurXJzc5m2tjabOnXqN6eT9b5RGpURY2JiIlfm/fv3xc4fmZmZ3LmlpvcYwVjZW0EvFBYWxpSUlFhP6z7sfnLaN1s9v5+cxnpY9WZKSkosPDy8ktakYirSCnptU9FW0NeuXSvZgMh3VaQVdCJd0vyOeHh4sEGDBlWojOp27LS3t2ceHh4yW361bwX91atX0NbWhra2NurUqSPWQl7RqkiSbgGxppgxYwbS09OrZF/NZdWrVy8AwLZt26TegmNZHDhwAKqqqnBxcZF1KFLl4uICFRWVYn0vksrz119/IT09HTNnzpR1KFVS0fNCmzZtxM4fderU4c4tr169kmGUVZu1tTXOnz+Pe9G30bltc/w0b0axhtkexN7HT/NmoFObZrh/NwqhoaHUGCAhhMjYu3fvcOXKFRw8eFBiNZKqKj8/P5w9exbJyck4ePAgzpw5g9GjR8s6rFKpkgk4qZhWrVqhS5cuOHbsmKxDqZCXL1/i33//BQBMmzZNxtF8HWMM+/fvh5OTU43pfqe01NXV4eTkhP3791NjbFJy7NgxdOnSBaamprIOhdRg1tbWiI2Nhee8efj7XDD6d7eEWVNtdG7bHGZNtdG/R3tcOh+C+Z6eiI2NpeSbEEKqAAcHBwwYMABTpkzB4MGDZR1OpXr9+jUmTZqEVq1aYeXKldi9e3e1OReV3CmfjPH5fO59eno61NTUuM9xcXHo2LEjAFC/t9/g7OyMJUuWIDOz+vbJ2qRJEwDAxYsXZRzJt12/fh2PHj3C9u3bZR2KTLi7u+PQoUO4ceMGOnfuLOtwarTMzEycP39eIt0g1VRFzws3b94Ue44wOzub60Wh6HmGlExPTw/e3t5YsmQJzpw5g/j4eO6cYmJigoEDB0qkwbXK5ujoyLV2S77N0NAQs2fPLte8KSkpEo2FlI65uTnc3d1lHQYpBWl8R8LDwyVWVlU/ds6bNw/z5s2TdRjlUiUT8KJVjdXU1MQS8KI/mqpylWRZc3JygqenJ86cOYPhw4fLOpwyi4mJ4Vqw7NOnj4yj+TY/Pz/o6+tz1eVrm169ekFfXx9+fn6UgFeykJAQfPz4EU5OTrIOpcoqel7g8/li54+vTUe+TVFREQ4ODtW2v2VHR0dZh1BtVCQBJ7Jhbm4Oc3NzWYdBaiA6dlYeqoJeQxkZGcHS0rLaPgde+Kz/o0ePZBzJtxUUFODYsWNwdXXlWnasbeTl5TF27FgcO3bsq/18Esk4ceIE2rdvD0NDQ1mHQgghhBBCyqF2Zgy1xIABA3DlypVq92xucHAwgM9dV7Ro0ULG0XxbYmIi3r17h969e8s6FJnq3bs33r59i6SkJFmHUmMxxnD58uVa080dIYQQQkhNRAl4DdapUyekp6dLrVN5SSlsNKKq3/0GgHv37gGAWOv8tVHbtm0B/G97EMlLTU3Fixcv0KlTJ1mHQgghhBBCyokS8BqsQ4cOAD43RFRd/PbbbwAAGxubKt3wQ6F79+5BV1cXWlpasg5FprS0tKCjo0MJeCUq/B4Xfq8JIYQQQkj1Qwl4Daajo4MmTZrgxo0bsg6lVEQiERYuXAjgf9XQq7q7d++iXbt2sg6jSmjXrh3u3r0r6zBqrBs3bsDAwIBrxZsQQgghhFQ/lIDXcObm5oiNjZV1GKUyevRoAMDixYuhoFAlG+gv5t69e1z169qubdu2dAe8EsXGxlJLt4SUg7u7O7y9vWUdRrUQHh4usUYeAwMDy93bgKOjY4lda1lbW2PGjBlfnc/Pzw8CgeCr41NSUsDj8bjXrVu3yhVfVeLn5wdra2tZh/FVRbf38ePHK3VZFdnnKsrPz49bz2/tg9WJLI+d7u7u3PYcNGhQhcqS5X7xNZSA13CNGzfGs2fPZB3Gd2VnZ+Po0aMAgFWrVsk4mtJ59+4dUlNTKQH/f23btkVKSgrevXsn61BqpGfPnqFx48ayDoMQqVi1ahXatGkDNTU16OnpYeLEiXj16pXU4wgKCoK5uTn4fD709fXx008/ifX2cPXqVQwaNAhaWlrlTuh8fX3Rs2dPqKmplfjDXSgUYsSIEdDS0kKdOnXg5OQEoVBYofWq6vz8/LB582aJl6uvrw+hUFitHs2rbK9fvwafz4eenl6lNNorFArLvb+ePn0a8vLyyM/PLzbu999/h46OjtgwW1vbby7rexdwKmL48OEQCoXYtGlTpZRfnRS9GCEvLw99fX3MmDEDHz58KHUZmzdvhlAoxLBhwyocz/f2C1mgBLyGa9SoUbVIwH/44QcAwOHDh2UcSendv38fACgB/3+F26FwuxDJevbsGRo1aiTrMAiRioiICCxcuBC3b9/GiRMncOvWLQwfPlyqMSQmJsLFxQXOzs6IjY2Fr68vdu7ciY0bN3LTvH//Hubm5hW6cJyVlYVBgwZhypQpJY4fO3Ysnjx5ggsXLuDatWt49eqVRH6UVmWamprQ0NCQeLny8vLQ0dGp9e22FBUcHIzevXtDVVW1Ui5M6OjoFEuUS8vY2BgikQhPnz4tNi41NRXGxsZiw5SVlcu9rIpSVVWFjo5Opey31RGfz4dQKMTTp09x7NgxXLx4ET/99FOp59fQ0ICOjg5UVVUrHIss94uvoQS8hmvUqBEyMjKQk5Mj61C+6unTp1yL5yNHjpRxNKWXlpYG4PMVdQI0adIEAJCeni7jSGqenJwcvHnzhhJwUmsEBwdjzJgxMDExQefOneHl5YVLly5JtYbNnTt3IBKJsGTJEhgZGWHAgAHo27cvbt++zU1jZ2eHlStXon///iWWwePx4OrqCnV1dfj4+KBHjx5o0KABzp07x00zZ84cLFiwoMTeND58+IBLly5h2bJlMDc3R7t27bB+/Xpcu3YN8fHx3HSXLl1C+/btwefzoaWlBXt7e+Tl5Ulwa3xfeno6bG1toaKigjZt2pTYJkh4eDh4PB6uXr2Krl27QkVFBUZGRnj8+DEAYOLEidyds5KqoAPA27dvYWdnxy3n+vXrxaZZv3496tevj/r168PHx6fM6xIQEAAzMzOoqqqidevW8Pf3L3MZ1UVQUBD69euH/v37IygoiBvOGEO/fv3g5ubGDXv69Cnq1q2LI0eOcMNSUlLg6OiIOnXqQFdXF9OnTy/Tnc5vadq0KRQVFZGamorc3FwoKipi4sSJAMQT8GvXrolVdf+StbU1eDweLl++jG3btnHT+fn5cdNkZGRg5MiRaNCgAdTU1GBpaYnw8HCxcmrTflFRPB4POjo60NPTQ9euXWFvby/2XS0oKMCKFSugr68PgUCAnj17lrkdocjISLRt2xaqqqoYPHgwJkyYIPY4xvf2i8LjUdHaVUVrSXh7e8PKygotW7aEqakpNm/eDA0NDdjZ2YnVhCoPSsArQX5+PtatW4dZs2bJ/PkiXV1dAFU7KSpM3KpLY3GFcnNzAQAqKioyjuSzEydOyHT5ysrKAP63XYjkFF7skfUV3Fu3bmHWrFlYt25diVUCSfWxYcMGNG7c+Lsve3v7YvPa29uXat4NGzZILN63b99CVVWVO85IQ4cOHaCgoAB/f38wxpCcnIyIiAgMHDiwTOVYWFhg1apVWL58OWbOnIkJEyaUuppqfn4+GGNQUlLihhWec+7cuQPg8w9ZZ2dndOnSBTExMbh48SK6dOkCkUhUpjgravr06UhPT8eNGzewZs0abN269avTzp49G3PmzEFsbCxWrVoFObnPP0c3bNgAoVCIAQMGfHXeo0ePol+/frh79y46duwIZ2dnsYsNHz58QGhoKK5cuYJt27Zh1apVCAkJKfV6hIWFYdy4cVi4cCFiY2OxdOlSuLm5VbvfKKWRm5uL0NBQLgEPDAzkxhUmqMHBwfjrr7/AGMO4ceMwaNAg7mZJXl4ebGxsUK9ePdy8eROnT59GZGQkPD09JRKfgoICmjZtipSUFNy9excCgQBRUVEAxBPwTp06QSgUYt++fSWWc+LECQiFQnTp0gXjxo3jqsUXrVXj5eWF6OhonDt3Dvfu3cOiRYvEvkO1ab+QNKFQiNDQUK62KwD4+Pjg8OHD8PPzQ3R0NLp37w4bGxtkZmaWqsz8/Hw4OzvDzMwMUVFRsLGxwYEDB8Sm+d5+URrPnj1DUFAQRCIRAgIC8M8//+Dff/9FZGRkucsEgOrR0lU1M3PmTOzevRtycnLYvXs3YmJi0KxZM5nEUnii/vjxo0yW/z1Fr4Z17NhRhpGUXWGiKc0fhF8q2qCJq6srlJSUpF5NsxAl4JWn8PsriapY5ZWUlIQePXogPz8fIpEIiYmJ2Llzp8ziIRXz/v37Uj2eVFINn5cvX5Zq3vfv35crti9lZWXhl19+wfTp06V6wdPQ0BChoaFwcXHB2LFjUVBQAB8fH4wdO7ZM5dja2nLv7e3toa6ujtOnT5dqXg0NDbRr1w5bt25Fx44dwePxsGrVKsjLy+Ply5cAPl+cePv2LWxtbdG0aVMAkHrvHG/evMHJkycRHByMdu3aoV27dpgwYQLXteiXZsyYARcXFwAQ+32krq4OdXX1b55XLSwsMHv2bADAxo0bcejQIZw7d467WMQYw4YNG9C6dWu0bt0ap06dwp49e2BnZ1eqdfn5558xc+ZM7v/ctGlTnDp1Cvv27UOnTp1KVUZ1cfHiRWhoaKBVq1Zo1KgREhISkJCQgBYtWgD4XIvS19cXkyZNwu3bt5GcnCx2sf/IkSPIzs7GH3/8wV1E8fHxgaOjI3enuaKMjY25O+DDhw/H0aNHkZeXh5SUFLRs2RIAoKioCB0dna92X1uvXj0AgJKSEvh8fokXs1NSUtCmTRu0b98eAIr9bq9N+4UkZGdnQyAQQCQSIScnB3369MH69esBfP6d+Ntvv+HkyZPo06cPAGD16tXw8/NDSEgIRowY8d3yz58/j7S0NPz++++oV68eTE1NcejQIbFpvrdflEb79u1hamoKCwsLGBoawszMDMbGxnjy5Ak6d+5c7nLpDnglCAgIAGMMBQUFyM3NxYULF2QWi6KiIgBU2btVXbp0AQD8999/Mo6k7D5+/AglJSWZtqx46tQp7r2cnBxOnjwps1jk5OSgqKhICXgl+PTpEwDItHeA0NBQ5ObmoqCgAIwxBAQEyCwWUnHq6upo1KjRd18lPSurpaVVqnnV1dUrHOenT58watQo6OnpSb2BzvT0dHh4eGDGjBm4ffs2/P39sXXrVuzfv79M5aioqHAXDgrfl+WxsD///BOJiYnQ0NBAvXr10KxZM/D5fO7cU79+fbi4uMDFxQVDhgzBr7/+itTU1DLFWFEpKSkQiURo1aoVN6ykKvWFevToUe5lmZmZce/V1dWhr6+PpKQkbpi8vDxMTU25z61btxYb/z337t3Dxo0bIRAIuNdff/2F5OTkcsdcVQUGBqJfv34APl/s6dixo9hdcABwcnKCnZ0dfvnlF+zfv1/se33v3j0IhUKoq6tz22rIkCHIzc2VWKNXLVu2RGpqKqKiotC1a1e0atUKkZGRePHiRbFnwCti/PjxOHXqFDp27Ih58+bh77//Fhtfm/YLSeDz+YiOjkZ0dDRCQ0Px7t07TJ8+HQCQkJCAnJwcODk5iW3P9PT0Um/PhIQE6OnpcRdXgM/fdUn78thd+L6ij/bSHfBK0LBhQ7x9+5arutKwYUOZxVIYg7y8vMxi+JqDBw8CAExNTavls63y8vIVfgakoor+OObxeDLd1wovOlWXLuSqk8I7C5XRQm1pFd235OTkqD/yam7u3LmYO3duueYteuGvMolEIri6ukIoFOLvv/8Wq4YtDTt27IC6ujqWLVsG4HNDkwkJCVi9erXYc7HlUZbvctu2bRETE4PXr19DQUEBIpEIq1evFjtv+vv74/bt2wgLC8ORI0ewcuVK3LlzB82bN69QnJWlInekSvK9C+FlvVDu7e2NoUOHig2TZQ2kyiASiXD69GlkZGRwvdAU3qyZP38+N11ubi6ioqKgrKyMiIiIYhdPLC0tS2xAV1K/R4yNjXHr1i28f/8ec+fOxe3btxEYGAhFRUWuxockDBkyBKmpqbhw4QLOnTsHGxsbrFq1CgsXLuSmqQ37haTweDzu+NOyZUuoqamhW7du+OWXX7hpgoODi9WyKppQSyPGL5X20Z2K/h6jO+CV4I8//oCamhoAYNiwYXB0dJRZLIUH06qYFBVW45H1c/LlpaKigoKCAu7upCwsWLCAe9+sWTMsWbJEZrF8+vQJIpGoyjwTX5MUfn9lWZNlyJAhXJVRNTU1+Pr6yiwWUvMxxjBhwgTExcXh/PnzErmbXlZv3rwp9gNNQUFBZo2a1q9fHxoaGjh69CgUFBTQvXt3sfGWlpbw9PTE9evXIS8vX+wOXmUyMjKCvLw84uLiuGExMTGVsqzY2Fju/fv37/H06VOxCw0FBQViDdTFxsYWuxBR2N1bSf/LNm3aIDk5Gc2bNxd7VccbBd9y/fp1vHz5EhEREdydSn9/f1y/fh0vXrzgpluwYAFUVVVx/vx5eHl5iTVC2KZNGyQlJUFHR6fY9vryd6eamlq5vjvGxsZISEjAkydPYGxsjI4dO+LkyZNo2rRpmX/bKikpffM3m7a2NsaMGYODBw9i0qRJYrUBSrtfCAQCfPz4UaYXzKuiwgsVWVlZaNGiBVRUVCAUCottzy8TcIFAUOJ+06JFCzx//hwZGRncsLIecwovBGZlZXHDSmpxvzJUvaysBujWrRtev36N7OxsiV/lLavCHVPWcXyp8Iri6NGjwefzZRxN+RQmmrm5uSX23SoNRe9C3r59W2ZxAFWvUbqapPD7W/REI21ycnLw9/fH27dvoaamxj3eQkhlmDJlCi5duoSQkBDk5eVxDRFqaWlJrUaXjY0NtmzZgvXr12PIkCFISkrC5s2bxRqmy8rKQmJiIp4/fw4AePToERQUFNCkSZNS38lJS0tDWloanjx5ApFIhOjoaABAq1atoKSkhH/++QfZ2dkwNjZGZGQklixZgqlTp3J3GJ88eYLt27fDwcEBenp6uHjxIt6/f//NKuCSpqmpCWdnZyxZsgR6enp4/vw59uzZU6YyCgoKuOfaP378iJycnBL/71FRUdiyZQtsbGzw22+/QUtLCzY2Nlw5PB4P8+bNw/r163H//n2cOHGi2ONZDRo0gIGBAfz8/GBkZARVVVXUr18fALB8+XIMGDAALVu2hL29Pd69e4dz587ByMgIY8aMKfc2qmqCgoLQrl077plnAGjevDkEAgFOnTqFiRMn4syZM9izZw+ioqJgbGyMOXPmYNSoUYiKioKamhpGjhyJVatWYfjw4fD29oaGhgZu3bqFq1evYseOHWLLK7xTbmVlBRUVlVLfITc2NsazZ89gbW0NOTk5dOzYEUlJSWLfw4yMDOTl5eHt27cA/tdwaWHV5qLrFx4ejidPnqBhw4ZQVFTk9itvb29YWFjAzMwMr169QlhYmNjd/tLuFxYWFhCJRNi9ezccHBygpqaGOnXqlPK/UnMwxpCWlgbGGJ49e4YlS5agefPmaNq0KeTk5DB//nzMmzcPioqKsLS0xJMnT3Ds2DFMnz5d7DETS0tL+Pn5ISIiAkZGRqhbty6UlZVhY2MDHR0dTJ8+HcuXL8elS5dw9+5dsefxv7dftGjRAurq6ggICMD8+fNx5MgRPHnyRGobqMrJyspiABgAlpWVJTYuJiaGGxcTE1Ppy6sqyhvjli1bmJKSEhOJRJUYXdnk5+dz61KV4iqrU6dOMQDs2bNnMouhKu27z549YwDY6dOnZRpHTVRQUMAUFRXZ1q1bSz1PVdo3vqYyYvzWOaI6bBNJysnJYXFxcSwnJ0fWoZRZ4f/py9fjx4/LXJabmxvz8vIqVxx79uxhrVu3Zqqqqqxx48Zs9uzZYvtOWFhYiXHu27ePW4/Hjx+zx48fs8KfXGFhYczAwIArw8vL65vrGhoayoyMjJiioiJr3LgxW7p0KcvPz+fmf/nyJXN0dGQ6OjpMWVmZGRsbs927d5drfb+MrSzS09OZra0tU1ZWZq1bt2be3t7cOhctHwB7+fJlsfkLt9G3toWVlRUbM2YMt5w2bdqwGzducGXs27ePqampsXXr1rG6deuy+vXrs1WrVn11XVu2bMl4PB5r166d2LiAgABmbm7OlJSUmJaWFhs0aBC7efNmubZLZdu3bx+zsrIq83zGxsZs7ty5xYYPHjyY2dnZsbS0NNawYUOx887Hjx+Zubk5mzBhAjcsOTmZOTk5MQ0NDaampsYsLCzYpk2bipV77949ZmFhweTk5JiGhkaZYtXU1GTz58/nPtetW5d5enpyn62srErcb7783icnJ7MePXowPp8v9j1ljLHVq1czU1NTpqKiwho2bMjc3d3Z27dvxeYv7X6xadMm1rBhQwaAzZo1q0zrWpWU99i5b98+7n8gJyfHdHV1mYuLC0tISOCm+fTpE/v555+ZoaEhU1RUZE2aNGHu7u4sPT1drKy8vDzm5ubGBAIBA8BOnjzJjbtx4wYzMzNjysrKzN7eno0bN47179+fG1+a/eLgwYNMT0+P6erqspkzZ7IePXqw6dOnM8Y+H5vd3NyKbQsrKyuxfadQWc65PMaqXh2JwpbzgM9XlwurcwOfqxIVXhmJiYmRyAP331peVVHeGH/66SccPXqU62OzKujXrx8uXryIdevWYd68ebIOp9wSEhLQsmVLXLhwAX379pVJDFVp371w4QL69++PhISEKvvcYXVmaGiIUaNGYfXq1aWavirtG19TGTF+6xxRHbaJJOXm5uLx48cwMjKq1TVT3N3dYWhoCG9vb1mHUuWFh4fD3d0dKSkpsg6FlJKfnx/8/PyK9VlNSEVVt2Ong4MDtLW1sXv3bpksvyznXKqCXsM9e/asSj239ObNG1y8eBEAqnXyDXzugoLP5+PevXsyS8Crknv37oHP50u0URTyP40aNSpV10+EEEIIITWdn58ftLW1YWxsjH///RdnzpzhcoyqjhLwGi4xMRFGRkayDoNTeGc0JCRExpFUnLy8PMzMzHDv3j1Zh1Il3Lt3D23atOFa7CaSZWBggMTERFmHQQghhBAic69fv8ayZcvw8uVLGBoaYvfu3bCyspJ1WKVCCXgNlp+fjzt37mDYsGGyDgUA8PDhQ64RqYEDB8o4Gslo27ZttW3FXdLu3r2Ljh07yjqMGqtDhw44efIk8vPzqQE0QsrA0dGxyjVEWlUZGhpi9uzZsg6DlIG5uTnc3d1lHQapgar6sXPevHnVtjYtJeA12P3795Gbm1tlkiITExMA4l2IVHft2rXDn3/+WeuTovz8fMTFxcHDw0PWodRYHTt2RG5uLmJiYmBhYSHrcAipNmTZFWh1Qwl49WNubg5zc3NZh0FqIDp2Vh6qK1qD3bhxAwoKClXix3poaCiAz/1AtmrVSsbRSE7btm2Rl5eHR48eyToUmXr48CHy8/PRtm1bWYdSY/3www+Ql5fHjRs3ZB0KIYQQQggpJ0rAa7Br166hbdu2UFVVlXUoXB+dqampMo5Esgr7Wb19+7aMI5GtqKgoAJBqv7O1jaqqKtq1a4dr167JOhRCCCGEEFJOVAW9hsrLy0NISAhmzZol61CwdetWAECPHj1Qv359GUcjWXXr1kWnTp3g7+8PV1dXWYcjM8eOHUPnzp2r9LNCNYGdnR22bNmCvLw8KCkpyTocUkvk5+cjJCQE8fHxyMrKgkAggImJCezs7Gr1ozeEEEJIeVACXkP9/fffePfuHYYOHSrTOBhj+PHHH7mYaiI3NzfMnDkTaWlp0NHRkXU4UicUCnH+/Hn8/vvvsg6lxhs6dCh8fHxw6dIlDBgwQNbhkBru+fPn2LVrF3bt9kV6mhB8dQ2oqAqQm5OFD+/fQVtHF5MneWDy5MnQ09OTdbiEEEJItVAlq6Azxrj32dnZYq8PHz6UOB0Rd/z4cbRo0QJmZmYyjWPixIkAgNmzZ9fYOyUjRoyAvLw8Dh06JOtQZOLQoUNQUFDA8OHDZR1KjdemTRs0b94cx48fl3UoVVbR88KHDx+KnUNKmo4UFx4eDlPTVvh13Xrot++FKTtPY35AJGb+GYb5AZGYsvM09Nv3wq/r1sPUtBXCw8NlHTIhhBBSLVTJBLxokq2trQ2BQMC9irbonZOTI4vwqrzc3FwEBgbC2dkZPB5PpnHs3bsXALBhwwaZxVHZ6tatC0dHR/j5+dW6H/WMMfj5+cHR0RF169aVdTg1Ho/Hg7OzM06ePInc3FxZh1MlFT0vdOzYUez8oa2tzY0rep4h4sLDw9HfxgZazc0w689w2M30hraRsdg02kbGsJvpjVl/hkOreWv0t7GhJJwQQggphSqZgJOKOXbsGDIyMjBu3DiZxtGlSxcAwN69e2V6IUAa3NzcEBMTgzt37sg6FKmKiopCbGws3NzcZB1KrTFu3DhkZGTA399f1qGQGuj58+dwcHBEE7MOGPnzLqjW0fjm9Kp1NDDy591oYtYBjo5D8Pz5cylFWnru7u7w9vaWdRjVQnh4OAwNDWUdBikDPz8/WFtbyzqMr+LxeNyrsmtvBQYGyuz3pp+fH7eeAoFAJjFImiyPne7u7tz2HDRoUIXKkuV+8TVVMgFv0KAB0tPTkZ6ejszMTGRlZXGv+/fvc9PVq1dPhlFWTYwxbNq0CQMGDEDLli1lFodQKER0dDQAyPxCgDT0798fOjo68PPzk3UoUuXn5wddXV3069dP1qHUGsbGxhgwYAA2btxY62pclEbR88L9+/fFzh+ZmZncuaVBgwYyjLLq2rVrFz5++gTnxZsgr1i6hv7kFZXgvHgTcvPysHv3bonE4e3tDRMTE/D5fGhra2PMmDEQCoUSKbssgoKCYG5uDj6fD319ffz0008oKCjgxl+9ehWDBg2ClpYWeDwebt26VeZl+Pr6omfPnlBTUyvxh7tQKMSIESOgpaWFOnXqwMnJSSbbgtRMr1+/Bp/Ph56eXqWcU4RCYbn319OnT0NeXh75+fnFxv3+++/F2t2xtbX95rKsra0xY8aMcsXyPcOHD4dQKMSmTZsqpfzqpOjFCHl5eejr62PGjBllqnm2efNmCIVCDBs2rMLxfG+/kIUqmYDLycmhYcOGaNiwIQQCAdTU1MReRacj4s6fP4/o6GjMnz9fpnEUNshz9epVmcYhLQoKChg7diwOHjyIjIwMWYcjFRkZGTh48CDGjBkDBQVqz1GaPD09ER0djdDQUFmHUuUUPS98ee4QCATcuYXOH8Xl5+dj125ftOnt8N07319SraMBs94O2LXbt8Qfy2XVtGlTbN++HbGxsTh37hyePXsGFxeXCpdbFomJiXBxcYGzszNiY2Ph6+uLnTt3YuPGjdw079+/h7m5OVatWlXu5WRlZWHQoEGYMmVKiePHjh2LJ0+e4MKFC7h27RpevXolkR+lhABAcHAwevfuDVVVVdy8eVPi5evo6JS7gVpjY2OIRCI8ffq02LjU1FQYG4s/GqOsrCyzxnBVVVWho6MDDY2yHTtrKj6fD6FQiKdPn+LYsWO4ePEifvrpp1LPr6GhAR0dHYl0pSzL/eJr6BdIDcIYw4oVK9ChQwf06tVLZnEU9gkNAN27d5dZHNI2Z84cfPr0CcuWLZN1KFKxdOlSiEQizJ07V9ah1Dq9e/dGhw4dsGLFCroLTiQmJCQE6WlCtB80slzzdxg0EmnC5zhz5kyFY3F1dUXv3r1hZGQECwsLzJ07F//++69U2z64c+cORCIRlixZAiMjIwwYMAB9+/bF7du3uWns7OywcuVK9O/fv8QyeDweXF1doa6uDh8fH/To0QMNGjTAuXPnuGnmzJmDBQsWoE2bNsXm//DhAy5duoRly5bB3Nwc7dq1w/r163Ht2jXEx8dz0126dAnt27cHn8+HlpYW7O3tkZeXJ8Gt8X2GhoaYPXs2unfvDhUVFXTr1g0JCQnc+KSkJDg4OEBbWxsqKipo164dTp8+LVZGSkoK7OzsoKmpCXV1dXTr1g2xsbHceMYYli1bBn19faioqKBFixbUA0cFBQUFoV+/fujfvz+CgoK44Ywx9OvXT+wRs6dPn6Ju3bo4cuQINywlJQWOjo6oU6cOdHV1MX36dIm1sdG0aVMoKioiNTUVubm5UFRU5Br3LZqAX7t2Tayq+5esra3B4/Fw+fJlbNu2jZuuaK3FjIwMjBw5Eg0aNICamhosLS2LtWsREBAAMzMzqKqqonXr1vQo2DfweDzo6OhAT08PXbt2hb29Pa5fv86NLygowIoVK6Cvrw+BQICePXvi7t27ZVpGZGQk2rZtC1VVVQwePBgTJkwQexzje/tFeHg4eDweXr16xQ0rWkvC29sbVlZWaNmyJUxNTbF582ZoaGjAzs5OrCZUeVACXoMcPHgQ169fx2+//SbTZx0sLS0BAI8fP5ZZDLKgq6uLn3/+GTt27BD7gVYT3bp1Czt37sTPP/9c5a4q1gY8Hg+//vorIiIiam3r+0Ty4uPjwVfXKNbgWmlpNzUBv466WGIoCRkZGfjzzz9hZmYGFRUViZb9LR06dICCggL8/f3BGENycjIiIiIwcODAMpVjYWGBVatWYfny5Zg5cyYmTJhQ6mqq+fn5YIxBSel/jwMUboPCNkcKCgrg7OyMLl26ICYmBhcvXkSXLl0gEonKFKck7N69G5MnT0ZUVBQ0NTUxZswYbtyrV6/QoUMHhISEIC4uDsOHD8eQIUPEfivMnDkTmZmZuHr1Km7dugUPDw+xGhUnTpzAunXrsGPHDsTHx2PXrl015nlbWcjNzUVoaCiXgAcGBnLjChPU4OBg/PXXX2CMYdy4cRg0aBBGjvx8kS4vLw82NjaoV68ebt68idOnTyMyMhKenp4SiU9BQQFNmzZFSkoK7t69C4FAwN3kKZqAd+rUCUKhEPv27SuxnBMnTkAoFKJLly4YN24cVy2+aO8tXl5eiI6Oxrlz53Dv3j0sWrRI7DsUFhaGcePGYeHChYiNjcXSpUvh5uaGGzduSGRdazKhUIjQ0FD88MMP3DAfHx8cPnwYfn5+iI6ORvfu3WFjY4PMzMxSlZmfnw9nZ2eYmZkhKioKNjY2OHDggNg039svSuPZs2cICgqCSCRCQEAA/vnnH/z777+IjIwsd5kA9QNeY7x//x4LFizAsGHDZNoYR0BAAADAwMCgVjbkMmPGDOzduxfTpk1DREREjazmKhKJMG3aNJiZmWH69OmyDqfW6tWrF1xcXLBgwQI4ODigTp06sg6JVHNZWVlQUa1YMqPMF5T6B9T3BAcHY8SIEcjOzkbnzp2l/siFoaEhQkND4eLigrFjx6KgoAA+Pj4YO3ZsmcqxtbXl3tvb20NdXb3Ynd+v0dDQQLt27bB161Z07NgRPB4Pq1atgry8PF6+fAkAePv2Ld6+fQtbW1s0bdoUANCuXbsyxSgpdnZ23PbZuHEjjI2Ncf/+fbRp0wadOnVCp06duGkXL16M9evX48KFC5g0aRKAz3dTbW1tudoAX7Zlk5KSgrp162LAgAFQUFColb8zJOnixYvQ0NBAq1at0KhRIyQkJCAhIQEtWrQAADRq1Ai+vr6YNGkSbt++jeTkZJw4cYKb/8iRI8jOzsYff/zB/d7x8fGBo6Mjd6e5ooyNjbk74MOHD8fRo0eRl5eHlJQUbv9QVFSEjo4ONDU1SyyjsG0QJSUl8Pn8Em8cpKSkoE2bNmjfvj0AoFmzZmLjf/75Z8ycOZPbv5s2bYpTp05h3759Yvs1+Sw7OxsCgQAikQg5OTno06cP1q9fD+DzhZ/ffvsNJ0+eRJ8+fQAAq1evhp+fH0JCQjBixIjvln/+/HmkpaXh999/R7169WBqalrshsT39ovSaN++PUxNTWFhYQFDQ0OYmZnB2NgYT548QefOnctdbs3LDmopHx8fvH//HuvWrZNpHIXPpRVtLK82UVBQwLZt23Dz5k2uC7aaZs+ePYiMjMS2bdvo2W8ZW7duHd6+fQsfHx9Zh0JqAIFAgNycrAqV8fFDlsQuBvXq1Qt37tzBxYsXIScnh1mzZkmk3NJKT0+Hh4cHZsyYgdu3b8Pf3x9bt27F/v37y1SOiooKd9e68H1ZulH9888/kZiYCA0NDdSrVw/NmjUDn8/nkpv69evDxcUFLi4uGDJkCH799VekpqaWKUZJMTMz4963aNECioqKSEpKAvD5B/n8+fNhamoKTU1NCAQCvHnzBllZ/9vnJk+ejI0bN8La2hqLFy8u9kzykCFDwBhDy5Yt4eHhgYMHD0q9qn1NEhgYyDWiqqGhgY4dO4rdBQcAJycn2NnZ4ZdffsH+/fuhrq7Ojbt37x6EQiHU1dW57h6HDBmC3NxciTV61bJlS6SmpiIqKgpdu3ZFq1atEBkZiRcvXhR7Brwixo8fj1OnTqFjx46YN28e/v77b7Hx9+7dw8aNG8W6tvzrr7+QnJwssRhqEj6fj+joaK69mnfv3nE3bRISEpCTkwMnJyex7Zmenl7q7ZmQkAA9PT2xhldbt24t8fX48thd+L6iXWFTAl4DXLlyBRs2bMDSpUuhr68vszgKuyoYMmRIrb4b16NHD4wdOxaLFi3C69evZR2ORL1+/RqLFi2Cq6srevToIetwar0mTZpg6dKlWL9+fa1p8JBUHhMTE3x4/w7pjx+Wa/705Hh8yHwPExMTicSjpqaGFi1aoE+fPjh69Cj8/f0rXO2vLHbs2AF1dXUsW7YMbdu2xdChQzFr1iysXr26wmWXpe2Gtm3bIiYmBi9fvsTLly/h6emJzMxMNGrUiJvG398fV65cQbdu3eDv7w8zMzMkJiZWOE5JKFxXT09P+Pv7Y82aNbh+/Tqio6NRv359sWq+M2bMQGJiIsaMGYO4uDh07twZR48e5cY3bdoUSUlJ2Lx5M9TV1TFz5kw4ODhIfZ1qApFIhNOnT+PQoUNccnH9+vViCXhubi6ioqKgrKyMiIiIYuVYWlpyiVZ0dDTu3buHhIQENGzYUCJxGhsbIyUlBVFRUejQoQM6dOiAwMBAKCoqcjU+JGHIkCFITU3Fjz/+iPT0dNjY2ODXX38Vm8bb21tsXePi4ipUvbkm4/F4aN68OVq2bIl+/fph8+bN8PPzQ1paGjdNcHCw2PZ8+PDhVxujrKwYv1TaR3cq2v4OJeDV3IsXLzBy5Ej07NkTCxYskFkchY0pAKj0fh6rg7Vr1yI/Px+zZ8+uMY1kMcYwe/ZsFBQU4LfffpN1OOT/LViwAD169MCIESO4KqmElIednR20dXRxK/jI9ycuQWTwEejo6pX5GenSkJeXB/D5Lqq0vHnzptgPNAUFhQrf+Siv+vXrQ0NDA0ePHoWCgkKxRk4tLS3h6emJ69evQ15evtgdPGko2mBaQkIC8vPzuaq8165dw7hx4+Dg4AATExMIBIISL1IbGBhg4sSJCAwMxIABA8QaBgM+31kbPHgw1q9fj127duHcuXNSbZyvprh+/TpevnyJiIgILgHy9/fH9evX8eLFC266BQsWQFVVFefPn4eXl5dYGzdt2rRBUlISdHR00Lx5c7HXlzXk1NTUyvXdMTY2RkJCAp48eQJjY2N07NgRJ0+eRNOmTctcC09JSQmfPn366vjCLg8PHjyISZMmiV2MaNOmDZKTk4utZ9ELYcDnmkQfP36sMb/9JKWwNfOsrCy0aNECKioqEAqFxbbnl11MCwSCEvebFi1a4Pnz52I9D8XExJQppsKq6UVr4ZTU4n5loAS8GhOJRBg7dizy8/Nx6NAh7gdKZcrPz0dgYCDWrFmDpUuXYs2aNQgMDISjoyMAYOXKlV997vnKlSsYPHgw9PT0wOPxil1lrUm0tbWxfft2HDx4UOaPBUjK2rVrcfDgQWzbtg3a2tqyDof8PwUFBRw+fBj5+fkYO3asTBpeIjWDoqIiJk/ywP1LQcjJfFemeXMy3yHmUhAmT/KAoqJiheLIysrCjz/+iPDwcKSkpODGjRtwd3eHvr4+93ymNNjY2CAyMhLr169HcnIyLly4gM2bN2PQoEFisRbeCQOAR48eITo6ukzdUaalpSE6OhpPnjyBSCTikqHCqtX//PMPQkNDkZqaiuPHj2PJkiWYOnUqd4fxyZMnWLRoESIiIpCamoo///wT79+/L7FV9coWHByMw4cPIy4uDnPmzEH79u3Rtm1bAJ+rEp8+fRr3799HVFQUXF1dizWqN3fuXJw/fx6PHz9GWFgYbt++LbYeBw4cwJ49exAXF4f4+HgcO3aM+zFPyiYoKAjt2rVD+/btYWJiAhMTEzg4OEAgEODUqVMAgDNnzmDPnj04cOAArKysMGfOHIwaNYq7EDZy5EjUq1cPw4cPR2RkJB49eoTDhw9j6tSpxZZnaWmJw4cP48mTJ2IJ/vcYGxvj2bNnMDMzg5ycHDp27IikpCSx6ucZGRlIS0vD27dvAXz+TqWlpYklVgDQvHlzXLlyBU+ePEFubq5YS9be3t4ICgpCUlISbty4gbCwMLF9b/ny5fDz88O6devw6NEjREZGwsfHBwcPHhRbhoWFBUQiEXbv3o20tDSJtYlR3TDGkJaWBqFQiFu3bmHRokVo3rw5mjZtChUVFcyfPx/z5s1DQEAAkpOTER4ejqlTpxZLoi0tLXHjxg1EREQgLS0NHz9+BPD5+Kyjo4Pp06fjwYMH2LZtW7FW1L+3X7Ro0QLq6upc+1VHjhzBkydPKnnL/D9WzSQnJzMADABLTk6WSJlZWVlcmVlZWRIpU9K+jFEkErH58+czHo/Hzp8/X+nLf/bsGVu+fDnT1dVlAJimZl3WSL8J09Ssy8UFgD179uyrZZw5c4YtWbKEnThxggFgJ0+erPS4ZW3JkiWMx+NV2rpKa989ceIE4/F4bOnSpZW2DFIx58+fZzwej82fP5+JRKJqeVyThMo4R1RXOTk5LC4ujuXk5JR6nmfPnjF1dQ3W7IdubGlwDPM6/+i7r6XBMazZD12ZhobmN88BZYnbycmJNWrUiCkpKbGGDRsyJycnFh8fX67y3NzcmJeXV7nm3bNnD2vdujVTVVVljRs3ZrNnzxbbV8PCwsTOgYWvffv2McYYA8AeP37MHj9+zAp/coWFhTEDAwOuDC8vrxLLePz4MWOMsdDQUGZkZMQUFRVZ48aN2dKlS1l+fj43/8uXL5mjoyPT0dFhysrKzNjYmO3evbtc6/tlbGVhYGDAZs6cyTp16sSUlJRYly5d2MOHD7nxKSkprHfv3kxVVZUZGBiw/fv3s2bNmrG1a9dy0/z444+sWbNmTFlZmenp6bHZs2ezvLw8bnxQUBDr1KkTq1OnDlNXV2f9+vVj9+/fL1e8NcW+ffuYlZVVmeczNjZmc+fOLTZ88ODBzM7OjqWlpbGGDRuyrVu3cuM+fvzIzM3N2YQJE7hhycnJzMnJiWloaDA1NTVmYWHBNm3aVKzce/fuMQsLCyYnJ8c0NDTKFKumpiabP38+97lu3brM09OT+2xlZVXid+jL731ycjLr0aMH4/P5Yt9TxhhbvXo1MzU1ZSoqKqxhw4bM3d2dvX37Vmz+gIAAZm5uzpSUlJiWlhYbNGgQu3nzZrF4N23axBo2bMgAsFmzZpVpXauS8h479+3bx/0P5OTkmK6uLnNxcWEJCQncNJ8+fWI///wzMzQ0ZIqKiqxJkybM3d2dpaeni5WVl5fH3NzcmEAgKJY73Lhxg5mZmTFlZWVmb2/Pxo0bx/r378+NL81+cfDgQaanp8d0dXXZzJkzWY8ePdj06dMZY5+PzW5ubsW2hZWVldi+U6gs51xKwFn1TMBXrlzJALCNGzdW+rLDwsI+H1gFAjZ2/CQWeu02e5rxkXs10Pp8kFFWUWEaGhosLCzsu2XWlgS8oKCADR06lKmqqrLLly9LvHxp7LuXL19mqqqqzMXFhRUUFFTKMohkbNy4kQFgq1atqpbHNUmgBPx/ypOAM/b5mK+opMSa/dCNLTge+c3ke8HxSNbsh65MUUmJhYeHV9KaVExFEvDapqIJeNFkmkhHeRNwQr6nuh077e3tmYeHh8yWX5ZzLjVhXA1t374dS5cuxc8//4zZs2dX6rLCw8NhY2ODzl17YNveQ9DUrCs2PjUlGa9efq5KdCsuBdPGjYKNjQ3Onz8v0+7Qqgo5OTn8+eefGDRoEOzs7HDx4sVq1V3F9evXYWdnh65du2L//v01slu1mmT27Nl4//49lixZItZvMCFlYW1tjdDz5+HoOARbXK3Rupc9OgweJdY/eHpyPCKDjyDmUhBUlJRwITQUVlZWMoyaEEJIbeLn5wdtbW0YGxvj33//xZkzZ3Dx4kVZh1UqlIBXQwsWLMD8+fOxdOnSSl3O8+fP4ejoiM5de2Df0cASf9B3/8EUAHDu8k1oataF37EgjBvhiCFDhiA2NhZ6enqVGmN1oKqqilOnTmHAgAEYMGAAzpw5gy5dusg6rO+KiIiAra0tLCwsEBQUxDWgQaq2ZcuWITMzE/Pnz5d1KKQas7a2RlxcLHbv3o2du3bjdsgR8OuoQ5kvwMcPWfiQ+R46unpYtGA+Jk2aRMd6QgghUvX69WssW7YML1++hKGhIXbv3l1tLgRTAl4NzZs3D7/++muJzedL0q5du/CpoADb9h4qMfmO+OcKgM/N+Ldu0w7A5xYmt+09hE5tmmH37t1c12S1nZqaGkJCQjBw4ED07NkTv/zyC+bOnVsl7yiLRCKsX78eixcvRufOnREcHAw1NTVZh0VKicfj4bfffgNjDOvXr5d1OKQa09PTg7e3N5YsWYIzZ84gPj4emZmZqFOnDkxMTDBw4MAKN7gmDY6Ojlxrt+TbDA0Ny12zLiUlRaKxkNIxNzeHu7u7rMMgNVBVP3bOmzcP8+bNk3UY5cJjrHq1k//48WOu37/k5GQYGRlVuMzs7GwIBAIAn1s0rYrJhrRjzM/Ph4GBAfraDsbqdVtLnEa/njIAICr+CbQaireK/dO8Gbh0PgQpKSkl/kDj8Xg4efIk13p6bZGfn4+lS5fit99+g62tLfbv3w8tLa1ylyfp/eLly5dwc3PD2bNnsXDhQvj4+FSLH9ikuNp6XKuMc0R1lZubi8ePH8PIyIhaiSaEEEIqUVnOuVXv9hupEkJCQiAUCjF2/OQSxx/evwcA0NbCsljyDQCu4yfj+fPnOHPmTKXGWd0oKiri119/xdmzZ3Hr1i2Ym5sjPDxc1mEB+Py8v7m5OW7duoWzZ89izZo1lHwTQgghhBAiQZSAkxLFx8dDU7MuTFuZFRvHGMPCOdMAACfOhJU4v2nrNtDQ1ER8fDw3rLC/1OjoaACf71QV9n1a2wwYMADR0dFo2bIl+vTpg2XLlhXrr1JaMjMzsWzZMvTp0wfGxsaIjo7GgAEDZBILIYQQQgghNRkl4KREWVlZUKtTp8RxGa9foXe/Adi4fQ+UlZW/WoZAUAeZmZnc51u3bsHCwgIWFhYAgLlz58LCwgLLly+XbPDVhJ6eHi5evAgvLy+sWbMG+vr6WLJkCdLS0qSy/LS0NCxevBhNmjTBmjVr4OXlhQsXLlBjSoQQQgghhFQSSsBJiQQCAbKLJM9F1W+ghf3HgjB0xJhvlpGV9bmxnkLW1tZgn/ueF3v5+flJMvRqRV5eHsuXL0dycjLGjx+PLVu2wMDAAB4eHnj48GGlLDM+Ph4eHh4wMDDA1q1bMWHCBCQnJ2P58uWQl5evlGUSQgghhBBCKAEnX2FiYoK3b9/gQVxMueZ/EHsf796+hYmJiYQjq5n09fWxfv16PH36FCtWrEBwcDBMTU1hb2+PnTt34u7du/j06VO5yv706ROio6Oxc+dO2Nvbw9TUFMHBwfj555/x9OlTrFu3Dvr6+hJeI0IIIYQQQsiXql0CXrTR9g8fPiA7O1sir5LKr83s7Oygq6uLA3t3lWv+P/fugp6eHgYOHCjhyGo2TU1NLFq0CCkpKfjjjz+QlpaGGTNmwNzcHJqamujduzeWLFmC4OBgJCUliVVXf/fuHYRCIZKSkhAcHIwlS5agd+/e0NTUhIWFBWbOnIm0tDTs2bMHKSkpWLhwYZXuXoLUfEWPt5I6ln/48KHE8knt5e7uTl1illJ4eDgMDQ0lUlZgYGC5u0t1dHQssWsta2trzJgx46vz+fn5cT0rlCQlJQU8Ho973bp1q1zxVSV+fn6wtraWdRjftWnTJontW0Q6ZHnsdHd3576ngwYNqlBZFTkWVZZql4Dn5ORw783MzCAQCCr80tb+XyveRX+81WaKiorw8PDACf/DePv2TZnmffv2DU74H4aHhwe1ol1OysrKGD9+PG7evIn379/jypUrWL58OTQ0NLBnzx4MHjwYzZs3R/Pmzbl5GjVqBD09PTRv3hyDBw/Gnj17oKGhgeXLl+PKlSt49+4dbt68ifHjx3/z2X1CpKXo8VZbW1six3Mzs/81HFn0fEGqr1mzZoHH4+H48eNSX3ZQUBDMzc3B5/Ohr6+Pn376CQUFBdz4q1evYtCgQdDS0ipXQpeamoqxY8eicePGUFVVRatWrbB7926xaeLi4uDs7IzGjRvLbDtIm5+fHzZv3izxcvX19SEUCnHz5k2Jl13dlHSx4uzZs+Dz+Th8+LDElzdp0iRERkZKvNyiF1XU1NRgYWGBrVu3SvwCrLW1NbccPp8Pc3NzHD16VKLLqCn8/Py4bSUvLw99fX3MmDGjTDnW5s2bIRQKMWzYsArHY2trC6FQWOFyJElB1gGQqmvy5MnYvHkzpo8fjX1HA6GkpPTdefLy8jBt3CgoKSpi0qRJUoiy5uPz+ejRowd69OgB4PNdvdTUVCQlJeHNmzdwcXEBAPz555+oW7cuVFVV0axZMxgYGFS5K36EEFIWFy5cwN27d2Wy7MTERLi4uGDZsmUYM2YMHj58iJEjR6J+/frw9PQEALx//x7m5uawt7fH5Mkld9v5LQkJCVBSUsL+/fthZGSEq1evYuLEiVBVVcXYsWMBfG4UtWnTphg5ciR3vK/pKqt2lry8PHR0dJCbm1sp5VdnYWFhGDp0KH7//XeMGjVK4uXz+Xzw+XyJl1vo3LlzaNq0KcLCwrBgwQIkJCRgy5YtEl3GuHHjsHr1anz8+BGhoaEYM2YMWrRoAUtLS4kupybg8/lISkqCSCRCSkoKxo8fj59++qnUF9Y0NDSgoaEBVVVVsZrK5aGsrAwdHZ0KlSFp1e4OeP369bn3SUlJyMrKqvArMzMT6enpSE9PR4MGDWS4dlWLnp4eAgMDcf3fqxg3wvG7d8Lfvn0D9+EOuBFxDYGBgdSadiXh8XgwNDREnz59YGtryw13cnLCoEGD0KdPHxgaGlLyTaq8Bg0acMfezMxMiRzPk5KSuPKLni9I9ZORkYFp06bB19dXJsu/c+cORCIRlixZAiMjIwwYMAB9+/bF7du3uWns7OywcuVK9O/fv8QyeDweXF1doa6uDh8fH/To0QMNGjTAuXPnAAB9+/bFnj170KdPHzRt2hRubm4YOHAgTpw4wZXRsWNHrF27FkOHDv1qrJcuXUL79u3B5/OhpaUFe3t75OXlSWhLlE56ejpsbW2hoqKCNm3alHjhJDw8HDweD1evXkXXrl2hoqICIyMjPH78GAAwceJE7s5ZSVXQAeDt27ews7PjlnP9+vVi06xfvx7169dH/fr14ePjU+Z1CQgIgJmZGVRVVdG6dWv4+/uXuYzqJCIiAvb29li7di3Gjx8vNu5b22L48OFwc3MTmz40NBRqampc0nTw4EHuf1pSFfTCO/GHDh2Cvr4+6tevX65qz/Xr10eLFi0wadIkrFmzBtu2bcPTp0+58Xfv3kWfPn3A5/NhYGCA5cuXl7ltHT6fDx0dHa6x3Hr16hWrTcHj8bB3716MGDECAoEADRo0wF9//QWg+CMUhd+HV69eAQBatGiB3377Tay8rVu3wsjIiLujz+PxsH79enTv3h1qamro06cPXr58KTbP9u3b0bx5c/D5fLRv3x5hYSV3GVyZeDwedHR0oKenh65du8Le3l7su1pQUIAVK1ZAX18fAoEAPXv2LPPF1sjISLRt2xaqqqoYPHgwJkyYIPY4xrVr18QeOfnSl9sfEP8feXt7w8rKCi1btoSpqSk2b94MDQ0N2NnZidWEKo9ql4DLyf0vZIFAADU1tQq/BAIBGjZsiIYNG4qVTz7viOfPn8e96Nvo3LY5fpo3o1jDbA9i7+OneTPQqU0z3L8bhdDQUFhZWckoYkJIdSEnJ8cdeyV5PC9aPinZhg0b0Lhx4+++7O3ti81rb29fqnk3bNhQoRinTJmCyZMno0WLFhUqp7w6dOgABQUF+Pv7gzGG5ORkRERElLltEwsLC6xatQrLly/HzJkzMWHCBGzatOmr0799+xZ169YtdfkFBQVwdnZGly5dEBMTg4sXL6JLly4QiURlirOipk+fjvT0dNy4cQNr1qzB1q1bvzrt7NmzMWfOHMTGxmLVqlXcd3XDhg0QCoUYMGDAV+c9evQo+vXrh7t376Jjx45wdnYWu9jw4cMHhIaG4sqVK9i2bRtWrVqFkJCQUq9HWFgYxo0bh4ULFyI2NhZLly6Fm5sbbty4UeoyqpOoqCjY2tpixYoVmDZtmti4722L4cOH49SpU8jPz+fmCQgIwMCBA6GmpgYAGDp0KIRCIX7++eevxpCbm4uQkBBcvHgR3t7eWLFiBe7fv1/udbK1tYVIJEJ4eDgA4PXr1+jduzc6deqEu3fv4sCBAzh8+HC5j1GMMZw9exavX7/mutYtysfHB5aWloiKioK/v3+pv8+urq44ePCg2LBDhw7B1dVVLIHcvn07Vq5cicuXL+Phw4f49ddfuXF+fn5YsWIF1q9fj5iYGLi5ucHOzg5Pnjwp17pKglAoRGhoKH744QdumI+PDw4fPgw/Pz9ER0eje/fusLGxEeu++Fvy8/Ph7OwMMzMzREVFwcbGBgcOHBCbplOnThAKhdi3b1+5Y3/27BmCgoIgEokQEBCAf/75B//++2/FH6dg1Ux6ejoDwACw9PR0WYcjNVlZWdx6Z2VlSX35z549Y15eXkxXV5cBYBqamqxRY32moanJADA9PT3m5eXFnj17JvXYajNZ7xek6qqt+0ZtPUeUJCcnh8XFxbGcnJxi47y8vLjt9K1X586di83buXPnUs3r5eVV7tj//PNP1rFjR/bp0yfGGGMAWEBAQLnKcnNzK3csly9fZg0bNmQKCgqMx+OxlStXljjd48ePGQAWGRkpNhwAe/DgAXvw4AEDwHJyctjZs2eZqalpieWcO3eOKSoqsjt37pQ4vqTt8OrVKwaAhYSElH0FvxAWFsYMDAzKPF9GRgaTk5NjZ86c4YYtWLCAffkzMywsjAFge/fu/WZ5Dg4OzM3NrdhwKysr1r59e+7zu3fvmLKyMgsKCmKMMbZv3z4GgMXExHDTjBw5kg0ZMkSsnK/9vxhjzNrami1atEhs2IgRI9jkyZO/GbOs7Nu3j1lZWZVrPkVFRdagQQMmLy/Pbt++XWya722LnJwcJhAIuP97fn4+a9CgAfP39y9W1saNG0vctwr/Z0+fPuWGaWhofHcfKVTS//Ljx48MAFuzZg1jjDFvb+9ix7KdO3cyY2PjUi2Dsc/7nqKiIlNTU2OKiopMSUmJbdmypdh0AJirq+tXy5g+fTr3ufD78PLlS8YYY6mpqYzH47G7d+8yxhhLTExkPB6PJSYmipXv4+PDff7xxx9Zz549uc+GhoZs586dYsvt3Lkz++WXX0q9roXKe+ws/J+qqakxVVVVBoD16dOHZWdnM8Y+7zeqqqrs3LlzYvPp6uqyI0eOFIvBzs6u2DJOnz7NFBUV2evXr7lhnTt3LvG7cPLkyWLHIsaKb3/GxP9HXl5ebPjw4YwxxoYPH84WLlzIGGOsU6dO7NixY8XK+9Y590v0DDgpFT09PXh7e2PJkiU4c+YM4uPjkZn5uZ9vExMTDBw4kBpcI4SQakJdXR2NGjX67nRaWlolDivNvOrq6uWK7enTp5g3bx7CwsIgLy9frjIkIT09HR4eHpgxYwYcHBzw6NEjzJgxA40bNy5W7fZbVFRUxN6rqKiU2EDggwcPMHr0aPz+++8wNzcvdfn169eHi4sLXFxc0L9/f3Tu3BkjRoyAgYFBqcuoqJSUFIhEIrRq1Yob1qZNm69OX9imSXkUbWhRXV0d+vr6Yo+eyMvLw9TUlPtc1irk9+7dQ0REhNgd/Ly8vGrR0nhZ5efnY9q0aYiJiYGrqytu374t1kjr97aFiooK7O3tcfz4cdja2iI8PBw5OTmws7MrUxzKyspo3Lgx91lTUxMZGRnlXq/Cu8Xs/6tt37t3D7du3RKrIVVQUFDmasTDhw+Hl5cXcnNzERERAU9PT5iYmKBfv35i05V3/27SpAl69eqFgwcP4rfffsOhQ4fQtWtXNGvWTGy6og3w1q1bl9tWmZmZSElJwezZszFv3jxumtzc3G9+HysDn89HdHQ0RCIRUlNTsXjxYkyfPh379u1DQkICcnJy4OTkJHZnPycnB8nJyaUqPyEhAXp6eqhXrx43rHXr1khMTJToehQevwuP3YXvK9rIKyXgpEwUFRXh4OAABwcHWYdCCCGknObOnYu5c+eWa95Tp05JOBpxt2/fxqtXr4o1bDRq1CicOHGiUlpoLsmOHTugrq6OZcuWAQDatm2LhIQErF69ukwJeEnYFy00JyUloW/fvpg3b165GjD19/fH7du3ERYWhiNHjmDlypW4c+eO2A/1qkTSjax9r82TsraJ4u3tXeyZe1VV1TLHVdWpqalhxYoVSE9PR6tWrbB06VKsXbtWbJrvbYthw4ZhwoQJ2LVrFwICAmBnZ1fmxtYUFIqnI19+R8qisMXrohcKBw0aVGzdykpDQ4P7TpmZmSEyMhIbNmwoloB/bf/+cj8s6TERNzc3LFmyBGvWrMGhQ4e4Bh+L+nJ7fbmtfH198X/t3XtUVmWix/HfiyK3V8RSuaSCTIDkJRhqMaVN3kZEFFIjO2WCmXoSXdIxy/KSt5zyktfRpHFkRqVRZ9RKrZSSs+roKS9peZtMBTwKaqKjCCrCPn+w2MtX1Li1Ef1+1nrXgnfv/exn73e/+92/vZ/97N/97ncO71X1hGhV2Ww2c10FBwfLw8NDHTp00B//+EdznA0bNqhFixYO010fqK2o440qeutOdbZPiQAOAADuIN26ddOBAwcc3gsNDdWsWbNu2xFZTTt37ly5A7T69evX+OPtsrKy1KVLFw0ePFhvvPFGlcuJiIhQRESERo0apaZNm+qLL76wLIC3atVK9erV04EDB8wr7/v27fuFqapm//795t8XLlzQ8ePHHZazuLhYhw4dMq/G79+/v9x6KLsSerPPsl27djp69Ogde/Li1+Dt7a358+dr4MCBiouLU8eOHSVVbF306NFDRUVFSk9P17p167R48WKrqn1LmzZtkpOTk9kfUbt27bRq1SoFBgbWaN8gbm5uFb5nWSoN5vn5+eb/13cSV6Zfv35KSkrSrFmzlJ2dXanHcDVs2FD+/v7Kzs7WgAEDKjydFcpO2uTn5ysoKEiurq7KyclR586dbzud3W6/6XoKCgrSyZMnlZeXZ4b2ffv2ObQ4+iVlJ0ry8/PNTriPHz+u9u3bV7iMqiKAAwCAO4bdblfr1q3Lve/n52fp0zWioqI0f/58zZ49W3369NGRI0c0b948h47p8vPz9dNPP+nkyZOSpB9//FH169dXy5YtK3Ql58SJE+rSpYu6dOmi4cOHKzc3V5LUoEEDc/qrV686nJDIzMzUnj175OPjIx8fH2VnZ2vRokWKi4uTn5+f0tPTdeHCBUubnHp5ealfv34aN26c/Pz8dPLkSS1durRSZRQXF5u9OV+5ckWFhYXm+mjatKl5O8Lu3bs1f/58RUVFacaMGWratKmioqLMcmw2m0aPHq3Zs2frhx9+0Nq1a7Vu3TqHeTVp0kT+/v5KTU1Vq1at5ObmZj41YeLEierRo4eCg4MVGxurf//73/rss8/UqlWrOy7U1KTnn39eq1atUkJCgvbu3Su73V6hdeHi4qK4uDi9+uqrKiwsLNdJ4ZkzZ1RcXKyLFy+quLjY/EzLHjFVU86ePauffvpJW7du1dixYzV8+HC1bNlSkjRixAgtWLBAgwcPVnJyspydnbVt2zYdO3ZMb7/9doXnUVBQoNzcXF25ckXfffedli9frldeeaXC00dERCglJUV5eXmqX7++3n///XLjeHh4KD4+XuPHj1dcXJwaNWpU4fKl0u03OTlZ3t7e6tSpk06dOqX169ere/fu6tatW6XKqg7DMJSbmyvDMHTixAmNGzdODz74oHkSZMyYMRo9erScnZ0VERGh7OxsrVq1SklJSQ63mURERCg1NVXbt29Xq1at1LhxY7m4uCgqKko+Pj5KSkrSxIkT9eWXX2rv3r2KjIw0p83Ly9PVq1d1/vx5STK3PbvdLrvdrqCgIHl6emrNmjUaM2aMPvzwQ+s6q/vFu8TvMPdqBzv3aodKuD22C9zKvbpt3Ku/ETdTmQ5h7nSqpU7Yli5darRp08Zwc3MzmjdvbiQnJzt8n8o68bnxtWzZMrPex44dMzuKKpumrDOqss6Kbnxd35FQ2bQ3vsqW6cyZM8ZTTz1l+Pj4GC4uLkZISIiRkpJSpeWtaidshlH63YuOjjZcXFyMNm3aGJMmTbplJ2zXd3pU5lbLWbYODaO0g6QBAwaY82nXrp3xzTffmGUsW7bM8PDwMGbNmmU0btzYuP/++4233377lssaHBxs2Gw24+GHH3YYtmbNGiMsLMxo0KCB0bRpU6NXr17Gt99+W6X18murTidsHh4eDu+dOHHC8PLycuhwriLrYsOGDYYk49lnny03H39//9t+R25WD39/f2PmzJkVWo7rtxtXV1cjLCzMmDdvnlFSUuIw3nfffWd0797d8PDwMDw9PY3HH3/cWLFiRYXmYRil29718wkODjYmT55sdhRZ5nb7qnPnzhnR0dFGo0aNjN/+9rfGu+++e9PvQ9n3ZO3ateXKuLH8t956y2jTpo3DOIsWLTJCQkIMZ2dnw8/Pz3jmmWeMH3/8scLLWqa6nbBJMpycnAxfX18jPj7eOHz4sDnOtWvXjClTphgBAQGGs7Oz0bJlSyMxMbHc7/bVq1eNhIQEw263G5KMdevWmcO++eYbo23btoaLi4sRGxtrDBo0yOjevbs5/PrP7Gb7TsMwjBUrVhh+fn6Gr6+vMXLkSOOJJ55w6IStrDPI69fFk08+aW6/16vMb67NMKrZiN1ip0+flre3t6TSDlKaNWtWyzWyxqVLl8wmU/n5+ebjHXBvY7vArdyr28a9+htxM5cvX9axY8fUqlWrSjXLu9skJiYqICCgSs8WvtdkZGQoMTFRmZmZtV0VVFBqaqpSU1PNR26h7ktLS9PIkSOVk5OjBg0a1Fo96tq+My4uTt7e3kpJSamV+VfmN5cm6AAAAABQiwoKCnTixAlNnz5diYmJtRq+64LU1FR5e3srJCRE27Zt06ZNm5Senl7b1aqQmuuJAAAAAABQaTNmzFBoaKgeeOABTZw4sbarc8c7e/ashg4dqoceekjTpk1TSkqK2fHenY4r4AAA4K711FNP1fhjr+5WAQEBSk5Oru1qoBLCwsKUmJhY29VADZg0adId1dz7Tt93jh492uF553UJARwAANy1nnrqqdquQp1BAK97wsLCFBYWVtvVwF2IfeevhyboAAAAAABYgAAOAAAAAIAFaIIOAABuqaioSBs3btShQ4eUn58vu92u1q1bKyYmRs7OzrVdPQAA6hQCOAAAKOfkyZNasmSJFi9J0ZlTuXJ2ayinBm4quVqoosKLaurto5eHDdWwYcPk5+dX29UFAKBOIIADAAAHGRkZ6h0bp8tXiuT8myd0X4dX5Xyfvzm8KC9L+Qc3a/o7M/XenLn65OOP1KlTp9qrMAAAdQT3gAMAAFNGRoa6d4/StUat1Lj/Inl2GOIQviXJ+T5/eXYYosb9F+laowB17x6ljIyM2qkwAAB1CAEcAABIKm123js2TvW8Q+X5h9fl5GK/7fhOLnZ5/mGs6nmHKjbuKZ08edKimlZcYmLiHfVs3TtZRkaGAgICarsaqITU1NQ60fpk7ty5bFt1TG3uOxMTE2Wz2WSz2dSrV69qlbV+/XrZbLYaqlnNIIADAABJ0pIlS3T5SpEadk6WrV7FOliz1XNWw87JKrh8RSkpKTVSj+sPvspetXEg+NFHHyksLEzu7u5q0aKF3njjDRUXF5vDv/rqK/Xq1UtNmzaVzWbTzp07K1V+VlaWXnjhBTVv3lxubm566KGHbrsOR40aJZvNpn/84x9VXiZAKg3udrvjCbZPP/1U7u7uSktLq/H5DR06VDt27KjxcjMzM819hIeHh8LDw7VgwQIZhlGj8+nUqZM5H3d3d4WFhenvf/97jc7jbpGammquq3r16qlFixYaMWKECgoKKlzGvHnzlJOTo2eeeaba9YmOjlZOTk61y6lJBHAAAKCioiItXpIi59888YtXvm/k5GJXg8AntHhJioqKimqkPt26dVNOTo75evXVV2uk3Ir66aefFB8fr379+mn//v364IMP9P7772vOnDnmOBcuXFBYWJjefvvtKs3j8OHDatCggf76179q//79ev3115WUlKTly5eXG3fLli3au3dvlZcHuJ2tW7fq6aef1sKFC/Xcc8/VePnu7u5q2rRpjZdb5rPPPtOePXv08ssva8KECRo1alSNz2PQoEHKycnRwYMHlZSUpAEDBmjXrl01Pp+7gbu7u3JycnT8+HGtWrVK6enpeuONNyo8faNGjeTj4yM3N7dq18XFxUU+Pj7VLqcmEcABAIA2btyoM6dy5RbavUrTu4VG6XRujjZt2lQj9Sk7aCp73Xi17tf23XffqaSkROPGjVOrVq3Uo0cPdevWzeGAOyYmRtOmTVP37jdfZzabTQMHDpSnp6emTp2qJ554Qk2aNNFnn30mqfQkw9KlS9W1a1cFBgYqISFBPXv21Nq1ax3KycvL0/Dhw/XBBx/cdD5ffvmlHnnkETPkxMbG6urVqzW0JiomICBAycnJ6tixo1xdXdWhQwcdPnzYHH7kyBHFxcXJ29tbrq6uevjhh/XJJ584lJGZmamYmBh5eXnJ09NTHTp00P79+83hhmFowoQJatGihVxdXRUUFKSFCxdatox3q+3btys2NlYzZ87Uiy++6DBszZo1atu2rdzc3NSmTRutXr3aHNa/f38lJCQ4jL9582Z5eHjo0qVLkqQVK1aYV0Nv1gS97Er8ypUr1aJFC91///1Vau1y//33KygoSEOHDtU777yjP/3pTzp+/Lg5fO/everatavc3d3l7++viRMn6tq1a5Wah7u7u3x8fOTv768hQ4bovvvu07fffuswjs1m01/+8hc9++yzstvtatKkif75z39KKr2KPmLECHPcjIwM2Ww2/fzzz5KkoKAgzZgxw6G8BQsWqFWrVuYVfZvNptmzZ6tjx47y8PBQ165ddebMGYdpFi1apAcffFDu7u565JFHtHXr1kotZ02w2Wzy8fGRn5+fHn/8ccXGxup///d/zeHFxcWaPHmyWrRoIbvdrt///veVPsG4Y8cOtW/fXm5uburdu7cGDx7scDvG119/7dCK6kY3rn/J8TOaNGmSnnzySQUHBys0NFTz5s1To0aNFBMT49ASqioI4AAAQIcOHZKzW8NyHa5VlPP9/nJ2tevQoUM1Up+vv/5azZo1U2hoqN544w1dvny5RsqtqEcffVT169fX6tWrZRiGjh49qu3bt6tnz56VKic8PFxvv/22Jk6cqJEjR2rw4MGaO3fuLcc/f/68Gjdu7PDef/7nf2rYsGEKCgoqN35xcbH69eunxx57TPv27VN6eroee+wxlZSUVKqeNSElJUXDhg3T7t275eXlpQEDBpjDfv75Zz366KPauHGjDhw4oP79+6tPnz46duyYOc7IkSN18eJFffXVV9q5c6eGDBni0KJi7dq1mjVrlhYvXqxDhw5pyZIllp+Yudvs3r1b0dHRmjx5soYPH+4wbOvWrRo0aJBef/117d+/X+PHj1dCQoK++eYbSaUB/OOPP3b4jNasWaOePXvKw8NDkvT0008rJydHU6ZMuWUdLl++rI0bNyo9PV2TJk3S5MmT9cMPP1R5maKjo1VSUmJ2DHn27Fl16dJFkZGR2rt3r5YvX660tDS99957VSrfMAx9+umnOnv2rMLDw8sNnzp1qiIiIrR7926tXr263Pf5VgYOHKgVK1Y4vLdy5UoNHDjQIUAuWrRI06ZN03//93/rX//6l959911zWGpqqiZPnqzZs2dr3759SkhIUExMjLKzs6u0rDUhJydHmzdv1m9/+1vzvalTpyotLU2pqanas2ePOnbsqKioKF28eLFCZRYVFalfv35q27atdu/eraioqHIthyIjI5WTk6Nly5ZVue4nTpzQRx99pJKSEq1Zs0b/8z//o23btlX7dgoeQwYAAJSfny+nBtVr7ufUwK3CB1C307NnTz377LN64IEHtHv3bo0ZM0anT5/W0qVLq112RQUEBGjz5s2Kj4/XCy+8oOLiYk2dOlUvvPBCpcqJjo42/46NjZWnp2e5K79lPv/8c23fvl3z5s0z31u+fLmysrL04Ycf3nSa8+fP6/z584qOjlZgYKAk6eGHH65UHWtKTEyMuX7mzJmjkJAQ/fDDD2rXrp0iIyMVGRlpjvvmm29q9uzZ2rJli4YOHSqp9Ap4dHS02rVrJ0kKDg52KD8zM1ONGzdWjx49VL9+fTr1qqarV68qKipK+fn5N+3IbcqUKRo5cqT5mQYGBurjjz/WsmXLFBkZqZ49e+ratWtKT09XdHS0rl27pvXr12vRokVmGa6urvLx8VHDhg1vWY/i4mLNmDFDzZs3V0hIiCZMmKCdO3ea20Fl+fr6SpLZKeTChQsVHBys6dOnSyq90jxmzBjNmTNHr732WoXLTUlJUWpqqq5evSqbzaa5c+fqd7/7Xbnxfv/732vMmDGSym/Dt5OQkKC33npL33//vdq3b68jR47o22+/1cqVKx3GGzRokPl59evXzyEMTp48WVOmTFFcXJyk0pNaaWlpSktL09ixYytcl+q6dOmS7Ha7SkpKVFhYqK5du2r27NmSSk+4zJgxQ+vWrVPXrl0lSdOnT1dqaqo2btyoZ5999hfL//zzz5Wbm6uFCxfqvvvuU2hoaLn15OzsLB8fH3l5eVV5OR555BGFhoYqPDxcAQEBatu2rUJCQpSdnX3Tz76iuAIOAABKD5auFlarjJKrhbc90K6oZ555Rj169FC7du2UkJCgOXPmaNmyZWazViucOnVKQ4YM0YgRI7Rr1y6tXr1aCxYs0F//+tdKlePq6ipXV1eHvwsLy6/ngwcP6vnnn9fChQsVFhYmSTp+/LhGjx6tv/zlL6pXr95Ny7///vsVHx+v+Ph49enTR++++66ysrIqt7A1pG3btubfQUFBcnZ21pEjRySVHpCPGTNGoaGh8vLykt1u17lz55Sfn29OM2zYMM2ZM0edOnXSm2++Wa55b58+fWQYhoKDgzVkyBCtWLHC8qb2d5OioiINHz5ccXFxGjhwoK5cueIw/Pvvv9ecOXNkt9vN1z//+U8dPXpUUun2HBsba3YKmJGRocLCQsXExFSqHi4uLmrevLn5v5eXl/Ly8qq8XGVXi8uabX///ffauXOnw3IkJyeby1FR/fv31549e7R7924tXLhQ48eP15YtW8qN98QTT1Sp3i1btlTnzp3Nq+ArV67U448/rt/85jcO4z344IPm340bNzbX1cWLF5WZmank5GSHZd2xY0ell7W63N3dtWfPHu3Zs0ebN2/Wv//9byUlJUkq7fuisLBQffv2dajnqVOnKlzPw4cPy8/PT/fdd5/5Xps2bWp8OW7cd5f9fbN9eGVwBRwAAKh169YqKryoorysKjVDLzqbpaLL+WrdunWN1y08PFyGYSg7O1uhoaE1Xv7NLF68WJ6enpowYYIkqX379jp8+LCmT59e7r7Xyrqxh+YjR46oW7duGj16tHk1WJJ27dqln3/+WREREQ7jP/fcc1q7dq3ZW/Xq1au1a9cubd26VR9++KGmTZum7777zuFAvbaULeurr76qTZs2af78+QoJCVH9+vXLNZUfMWKEevfurS1btmjDhg165513lJaWZl4RCwwM1JEjR/TFF18oIyNDI0eO1MqVK/Xpp5/WyrLVdR4eHpo8ebJOnTqlhx56SOPHj9fMmTMdxpk0aZKefvpph/eu7xjrmWee0eDBg7VkyRKtWbNGMTExcnd3r1Q96tcvH0eq04t5WY/XDzzwgPler169yi1bZTVq1Mj8TrVt21Y7duzQe++9pz/84Q8O493qiuuN9yHf7DaRhIQEjRs3Tu+8845Wrlx5084nb1xfN66rDz74oNzVWU9Pz5sv1K/EZrOZ6yo4OFgeHh7q0KGD/vjHP5rjbNiwQS1atHCY7vpAbUUdb1TRW3eq28s+ARwAACgmJkZNvX2Uf3CznDsMqfT0hQc/VzMf30rfI10Rhw4dks1mU8uWLWu87Fs5d+5cuQO0+vXrV/vKx42ysrLUpUsXDR48uFwvwd26ddOBAwcc3gsNDdWsWbPKhaKIiAhFRERo1KhRatq0qb744gvLA/j1HaYdPnxYRUVF5tW7r7/+WoMGDTKbxubm5urs2bPlyvD399dLL72kl156ST179tRHH33k0CTV3d1dvXv3Vu/evRUZGan+/fvr8uXL5tUpVJ63t7fmz5+vgQMHKi4uTh07dpQktWvXTkePHr3tdtSjRw8VFRUpPT1d69at0+LFi62q9i1t2rRJTk5OevLJJyWVLseqVasUGBgoJ6eaa/zr5la5W268vLwcWnxc30lcmX79+ikpKUmzZs1SdnZ2pR7D1bBhQ/n7+ys7O9uh/4U7QdlJm/z8fAUFBcnV1VU5OTnq3Lnzbaez2+03XU9BQUE6efKk8vLyzNC+b9++Su0Hyk6U5Ofnq0mTJpJKP5P27dtXuIyqogk6AACQs7OzXh42VEVHvlLJlfxfnuA6JVfydfXoV3p52FA5O1fs+eG3kp+fr1deeUXbtm1TZmamNmzYoFdeeUUvvvii2bGTFaKiorRjxw7Nnj1bR48e1ZYtWzRv3jz16tXLoa579uwxQ/KPP/6oPXv2VLj57IkTJ9SlSxd16dJFw4cPV25urnJzc83p7Xa7Wrdu7fCSJD8/P/n5+UmSsrOzNXbsWG3fvl1ZWVn629/+pgsXLlT5/tnq2LBhg9LS0nTgwAG98soreuSRR8yD2eDgYH3yySf64YcftHv3bg0cOLDcwfJ//dd/6fPPP9exY8e0detW7dq1y2E5li9frqVLl+rAgQM6dOiQVq1aZR7Mo3qef/55xcTEKCEhwQyJEydOVGpqqmbNmqUff/xRO3bs0NSpUx06CnNxcVFcXJxeffVVFRYWljsBd+bMGeXm5urixYsqLi42t/GaPpF19uxZ/fTTT/rggw80duxYDR8+3DxhN2LECJ0+fVqDBw/W3r17deDAAf35z3/WuHHjKjWPgoIC5ebmKisrS+vXr9fy5csVFRVV4ekjIiL05ZdfKi8vTxcuXND7779fbhwPDw/Fx8dr/Pjx6tWrlxo1alSpOk6cOFHvvPOOli5dqiNHjmjbtm167bXXlJ6eXqlyqsswDOXm5ionJ0c7d+7U2LFj9eCDDyowMFCurq4aM2aMRo8erTVr1ujo0aPKyMjQyy+/rH379jmUExERoW+++Ubbt29Xbm6ueZtEVFSUfHx8lJSUpIMHD+pPf/pTuV7U8/LylJubq/Pnz0uSue2Vbd9BQUHy9PTUmjVrJEkffvihZZ3VEcABAICk0ntwXV2cdXHrXBnFFXuet1FcpItb58jd1cWh+XRV1atXT3v37lWvXr0UHBysUaNGacCAAVqwYEG1y66Mnj17aunSpVq2bJnatm2rF198UfHx8Q7NWHfu3Knw8HDzntfnn39e4eHh+vjjjys0jy1btujo0aNKTU2Vr6+v+erbt2+F6+nu7q5//etf6tu3r0JCQjRz5kwtWbJEjz/+eOUWuAa89NJLmj9/vsLDw3Xu3DmHTpHee+89eXl5KTIyUn379tWAAQPMkwhliouLlZSUpNDQUA0YMEDPPfec2ZmVVNoEuKx5bWRkpC5evFjukW2ouvfff195eXlms+cuXbooLS1NK1euVLt27RQTE6Nvv/1WISEhDtP1799f+/fvV69evco9t/nRRx+Vr6+vJk6cqP/7v/8zt/FVq1bVaN3L+oxYtGiRpkyZovnz55vDmjRpoi+++EInT55Uhw4d9Nhjj2nZsmV66KGHKjWPZcuWydfXV61bt9brr7+u5ORkvfnmmxWefsSIEWrbtq0CAwPVuXNn9enT56bjDRw4UEVFRVV6HvuLL76od999VzNnzlRoaKji4+OVlZUlf/+qPd2iqgoKCuTr66vmzZsrNjZWjRo10qeffmq2QHjrrbc0fPhwvfbaa2rdurUSEhJ0+fJlNWvWzKGcAQMG6Omnn1b37t3l6+tr3m7i7Oysf/zjH9q3b5/Cw8O1efNm/cd//IdcXFzMafv27StfX18NGjRIksxtb9asWZJK952LFi3S3Llz5efnp+3bt6tDhw5WrB7ZjOo2YrfY6dOn5e3tLam0g5QbP6i7VVlvglLpGXcrrwLgzsV2gVu5V7eNe/U34mYuX76sY8eOqVWrVpW6QpiRkaHu3aNUzztUDTsny8nl1o95KrmSr4tb56j41CFt2bLZbPJ5J0lMTFRAQECVni18r8nIyFBiYqIyMzMrPW1AQIBGjBhx03tW8etJTU1Vamqq+cgt1H1paWkaOXKkcnJy1KBBg1qrR13bd8bFxcnb21spKSm1Mv/K/OZyDzgAADB16tRJmzd/rti4p3Ru9XA5t+oot4eiHDpmKzqbpcKDn+vq0a/k7uqiz+7Q8A0AdUVBQYFOnDih6dOnKzExsVbDd12Qmpoqb29vhYSEaNu2bdq0aZPlTe2rigAOAAAcdOrUSYcOHlBKSooWvb9EZ9ZukbOrXU4N3FRytVBFl/PVzMdXL7/xuoYOHVquKTEAoHJmzJihadOmqWvXrpo4cWJtV+eOd/bsWU2YMEFnzpxRQECAUlJS6syJYJqg1xH3anNS3B7bBW7lXt027tXfiJupahP0GxUVFWnTpk06dOiQLl68qIYNG6p169bq2bNntTtcs8L69evl5eWlTp061XZV7niZmZlav369kpOTa7sqqKCyZy0nJibWdlVwl2HfWTmV+c0lgNcR9+rBNG6P7QK3cq9uG/fqb8TN1FQABwAAt1eZ31x6QQcA4C5Wx86zAwBQ51Tmt5YADgDAXaiseXhBQUEt1wQAgLvb1atXJZU+SvOX0AkbAAB3oXr16snLy0unT5+WVPrMU5vNVsu1AgDg7lJSUqIzZ87I3d1d9ev/crwmgAMAcJfy8fGRJDOEAwCAmufk5KSWLVtW6EQ3ARwAgLuUzWaTr6+vmjVrpqKiotquDgAAd6UGDRrIyalid3cTwAEAuMvVq1evQvelAQCAXxedsAEAAAAAYIE6dwX8+i7eL126pEuXLtVibaxz/XLySBkAv+TGfeW9gn0lAAC4k9W5AH7941QCAwNrsSa1p6CgQHa7vbarAeAOdv2+0tvbuxZrUnt4/BYAALjT0AQdAAAAAAAL1Lkr4E2aNDH/zs3NvWeuBBuGYV7NuX4dAMDNNGnSRKdOnZJ0bz3/OT8/33z0FvtKAABwp6lzAfz67t3tdrs8PDxqsTbWuldONgCoPicnJzVr1qy2q1GrKvo4EAAAAKtwdAIAAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAFCOAAAAAAAFiAAA4AAAAAgAUI4AAAAAAAWIAADgAAAACABQjgAAAAAABYgAAOAAAAAIAF6td2BSrLMAzz70uXLtViTYDad/13gO8D4Pg9uP73AgAA4E5Q5wJ4QUGB+be3t3ct1gS4s/B9ABwVFBTIbrfXdjUAAABMNEEHAAAAAMACNqOOtdErKSnRzz//LElyd3eXzWar5RoBtccwDLNVCN8HwPE70aRJEzk5cZ4ZAADcOepcAAcAAAAAoC7i0gAAAAAAABYggAMAAAAAYAECOAAAAAAAFiCAAwAAAABgAQI4AAAAAAAWIIADAAAAAGABAjgAAAAAABYggAMAAAAAYAECOAAAAAAAFiCAAwAAAABgAQI4AAAAAAAWIIADAAAAAGABAjgAAAAAABYggAMAAAAAYAECOAAAAAAAFiCAAwAAAABgAQI4AAAAAAAWIIADAAAAAGABAjgAAAAAABYggAMAAAAAYAECOAAAAAAAFiCAAwAAAABgAQI4AAAAAAAWIIADAAAAAGABAjgAAAAAABYggAMAAAAAYAECOAAAAAAAFiCAAwAAAABgAQI4AAAAAAAWIIADAAAAAGABAjgAAAAAABYggAMAAAAAYAECOAAAAAAAFiCAAwAAAABgAQI4AAAAAAAWIIADAAAAAGABAjgAAAAAABYggAMAAAAAYAECOAAAAAAAFvh/TPYkQn9TtekAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotsoccer\n", "\n", "# Select the 5 actions preceding the 2-0\n", "shot = 2201\n", "a = actions[shot-4:shot+1].copy()\n", "\n", "# Print the game date and timestamp of the goal\n", "g = game.iloc[0]\n", "minute = int((a.period_id.values[0]-1) * 45 + a.time_seconds.values[0] // 60)\n", "game_info = f\"{g.game_date} {g.home_team_name} {g.home_score}-{g.away_score} {g.away_team_name} {minute + 1}'\"\n", "print(game_info)\n", "\n", "# Plot the actions\n", "def nice_time(row):\n", " minute = int((row.period_id-1)*45 +row.time_seconds // 60)\n", " second = int(row.time_seconds % 60)\n", " return f\"{minute}m{second}s\"\n", "\n", "a[\"nice_time\"] = a.apply(nice_time, axis=1)\n", "labels = a[[\"nice_time\", \"type_name\", \"player_name\", \"team_name\"]]\n", "\n", "ax = matplotsoccer.actions(\n", " location=a[[\"start_x\", \"start_y\", \"end_x\", \"end_y\"]],\n", " action_type=a.type_name,\n", " team= a.team_name,\n", " result= a.result_name == \"success\",\n", " label=labels,\n", " labeltitle=[\"time\", \"actiontype\", \"player\", \"team\"],\n", " zoom=False,\n", " figsize=6\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "socceraction", "language": "python", "name": "socceraction" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.1" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }