"""Implements the formula of the VAEP framework.""" import pandas as pd # type: ignore from pandera.typing import DataFrame, Series from socceraction.spadl.schema import SPADLSchema def _prev(x: pd.Series) -> pd.Series: prev_x = x.shift(1) prev_x[:1] = x.values[0] return prev_x _samephase_nb: int = 10 def offensive_value( actions: DataFrame[SPADLSchema], scores: Series[float], concedes: Series[float] ) -> Series[float]: r"""Compute the offensive value of each action. VAEP defines the *offensive value* of an action as the change in scoring probability before and after the action. .. math:: \Delta P_{score}(a_{i}, t) = P^{k}_{score}(S_i, t) - P^{k}_{score}(S_{i-1}, t) where :math:`P_{score}(S_i, t)` is the probability that team :math:`t` which possesses the ball in state :math:`S_i` will score in the next 10 actions. Parameters ---------- actions : pd.DataFrame SPADL action. scores : pd.Series The probability of scoring from each corresponding game state. concedes : pd.Series The probability of conceding from each corresponding game state. Returns ------- pd.Series The offensive value of each action. """ sameteam = _prev(actions.team_id) == actions.team_id prev_scores = (_prev(scores) * sameteam + _prev(concedes) * (~sameteam)).astype(float) # if the previous action was too long ago, the odds of scoring are now 0 toolong_idx = abs(actions.time_seconds - _prev(actions.time_seconds)) > _samephase_nb prev_scores[toolong_idx] = 0.0 # if the previous action was a goal, the odds of scoring are now 0 prevgoal_idx = (_prev(actions.type_name).isin(["shot", "shot_freekick", "shot_penalty"])) & ( _prev(actions.result_name) == "success" ) prev_scores[prevgoal_idx] = 0.0 # fixed odds of scoring when penalty penalty_idx = actions.type_name == "shot_penalty" prev_scores[penalty_idx] = 0.792453 # fixed odds of scoring when corner corner_idx = actions.type_name.isin(["corner_crossed", "corner_short"]) prev_scores[corner_idx] = 0.046500 return scores - prev_scores def defensive_value( actions: DataFrame[SPADLSchema], scores: Series[float], concedes: Series[float] ) -> Series[float]: r"""Compute the defensive value of each action. VAEP defines the *defensive value* of an action as the change in conceding probability. .. math:: \Delta P_{concede}(a_{i}, t) = P^{k}_{concede}(S_i, t) - P^{k}_{concede}(S_{i-1}, t) where :math:`P_{concede}(S_i, t)` is the probability that team :math:`t` which possesses the ball in state :math:`S_i` will concede in the next 10 actions. Parameters ---------- actions : pd.DataFrame SPADL action. scores : pd.Series The probability of scoring from each corresponding game state. concedes : pd.Series The probability of conceding from each corresponding game state. Returns ------- pd.Series The defensive value of each action. """ sameteam = _prev(actions.team_id) == actions.team_id prev_concedes = (_prev(concedes) * sameteam + _prev(scores) * (~sameteam)).astype(float) toolong_idx = abs(actions.time_seconds - _prev(actions.time_seconds)) > _samephase_nb prev_concedes[toolong_idx] = 0.0 # if the previous action was a goal, the odds of conceding are now 0 prevgoal_idx = (_prev(actions.type_name).isin(["shot", "shot_freekick", "shot_penalty"])) & ( _prev(actions.result_name) == "success" ) prev_concedes[prevgoal_idx] = 0.0 return -(concedes - prev_concedes) def value( actions: DataFrame[SPADLSchema], Pscores: Series[float], Pconcedes: Series[float] ) -> pd.DataFrame: r"""Compute the offensive, defensive and VAEP value of each action. The total VAEP value of an action is the difference between that action's offensive value and defensive value. .. math:: V_{VAEP}(a_i) = \Delta P_{score}(a_{i}, t) - \Delta P_{concede}(a_{i}, t) Parameters ---------- actions : pd.DataFrame SPADL action. Pscores : pd.Series The probability of scoring from each corresponding game state. Pconcedes : pd.Series The probability of conceding from each corresponding game state. Returns ------- pd.DataFrame The 'offensive_value', 'defensive_value' and 'vaep_value' of each action. See Also -------- :func:`~socceraction.vaep.formula.offensive_value`: The offensive value :func:`~socceraction.vaep.formula.defensive_value`: The defensive value """ v = pd.DataFrame() v["offensive_value"] = offensive_value(actions, Pscores, Pconcedes) v["defensive_value"] = defensive_value(actions, Pscores, Pconcedes) v["vaep_value"] = v["offensive_value"] + v["defensive_value"] return v