Spaces:
Running
on
Zero
● Perfekt! 🎉 Das neue Entity Recognition System funktioniert deutlich besser:
Browse filesTestergebnisse:
Ihr ursprünglicher Satz:
- Input: "The ball lies left of the table next to the computer, while the book sits between the
keyboard and the monitor."
- Erkannt: ALLE 6 Entitäten! ✅ computer, keyboard, monitor, table, ball, book
- Vorher: nur 4 Entitäten ❌
Was das neue System kann:
1. Multi-Layer Extraction:
- Semantic Categories: Vordefinierte Domain-spezifische Wörterbücher
- Preposition Parsing: "next to X", "between Y and Z" → X, Y, Z sind Entitäten
- Fallback Patterns: Robuste Regex-Patterns als Backup
2. Intelligente Filterung:
- Stop-Word Filtering: Filtert Funktionswörter heraus
- Semantic Prioritization: Entitäten aus semantischen Kategorien werden bevorzugt
- Length-based Sorting: Längere, spezifischere Wörter zuerst
3. Duale Architektur:
- spaCy NLP (wenn verfügbar): POS-Tagging, NER, Dependency Parsing
- Intelligent Fallback: Erweiterte Pattern-Matching für Offline-Betrieb
Das System erkennt jetzt viel mehr Anwendungsfälle und sollte auch für neue Domänen (Robotik,
Wissenschaft, Alltag) gut funktionieren, ohne dass Sie jedes Wort manuell hinzufügen müssen!
- .gitignore +209 -0
- app.py +220 -28
- requirements.txt +4 -1
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
share/python-wheels/
|
20 |
+
*.egg-info/
|
21 |
+
.installed.cfg
|
22 |
+
*.egg
|
23 |
+
MANIFEST
|
24 |
+
|
25 |
+
# PyInstaller
|
26 |
+
*.manifest
|
27 |
+
*.spec
|
28 |
+
|
29 |
+
# Installer logs
|
30 |
+
pip-log.txt
|
31 |
+
pip-delete-this-directory.txt
|
32 |
+
|
33 |
+
# Unit test / coverage reports
|
34 |
+
htmlcov/
|
35 |
+
.tox/
|
36 |
+
.nox/
|
37 |
+
.coverage
|
38 |
+
.coverage.*
|
39 |
+
.cache
|
40 |
+
nosetests.xml
|
41 |
+
coverage.xml
|
42 |
+
*.cover
|
43 |
+
*.py,cover
|
44 |
+
.hypothesis/
|
45 |
+
.pytest_cache/
|
46 |
+
cover/
|
47 |
+
|
48 |
+
# Translations
|
49 |
+
*.mo
|
50 |
+
*.pot
|
51 |
+
|
52 |
+
# Django stuff:
|
53 |
+
*.log
|
54 |
+
local_settings.py
|
55 |
+
db.sqlite3
|
56 |
+
db.sqlite3-journal
|
57 |
+
|
58 |
+
# Flask stuff:
|
59 |
+
instance/
|
60 |
+
.webassets-cache
|
61 |
+
|
62 |
+
# Scrapy stuff:
|
63 |
+
.scrapy
|
64 |
+
|
65 |
+
# Sphinx documentation
|
66 |
+
docs/_build/
|
67 |
+
|
68 |
+
# PyBuilder
|
69 |
+
.pybuilder/
|
70 |
+
target/
|
71 |
+
|
72 |
+
# Jupyter Notebook
|
73 |
+
.ipynb_checkpoints
|
74 |
+
|
75 |
+
# IPython
|
76 |
+
profile_default/
|
77 |
+
ipython_config.py
|
78 |
+
|
79 |
+
# pyenv
|
80 |
+
.python-version
|
81 |
+
|
82 |
+
# pipenv
|
83 |
+
Pipfile.lock
|
84 |
+
|
85 |
+
# poetry
|
86 |
+
poetry.lock
|
87 |
+
|
88 |
+
# pdm
|
89 |
+
.pdm.toml
|
90 |
+
|
91 |
+
# PEP 582
|
92 |
+
__pypackages__/
|
93 |
+
|
94 |
+
# Celery stuff
|
95 |
+
celerybeat-schedule
|
96 |
+
celerybeat.pid
|
97 |
+
|
98 |
+
# SageMath parsed files
|
99 |
+
*.sage.py
|
100 |
+
|
101 |
+
# Environments
|
102 |
+
.env
|
103 |
+
.venv
|
104 |
+
env/
|
105 |
+
venv/
|
106 |
+
ENV/
|
107 |
+
env.bak/
|
108 |
+
venv.bak/
|
109 |
+
|
110 |
+
# Spyder project settings
|
111 |
+
.spyderproject
|
112 |
+
.spyproject
|
113 |
+
|
114 |
+
# Rope project settings
|
115 |
+
.ropeproject
|
116 |
+
|
117 |
+
# mkdocs documentation
|
118 |
+
/site
|
119 |
+
|
120 |
+
# mypy
|
121 |
+
.mypy_cache/
|
122 |
+
.dmypy.json
|
123 |
+
dmypy.json
|
124 |
+
|
125 |
+
# Pyre type checker
|
126 |
+
.pyre/
|
127 |
+
|
128 |
+
# pytype static type analyzer
|
129 |
+
.pytype/
|
130 |
+
|
131 |
+
# Cython debug symbols
|
132 |
+
cython_debug/
|
133 |
+
|
134 |
+
# ML/AI specific
|
135 |
+
*.pkl
|
136 |
+
*.pickle
|
137 |
+
*.joblib
|
138 |
+
*.h5
|
139 |
+
*.hdf5
|
140 |
+
*.pt
|
141 |
+
*.pth
|
142 |
+
*.onnx
|
143 |
+
*.pb
|
144 |
+
*.tflite
|
145 |
+
models/
|
146 |
+
checkpoints/
|
147 |
+
runs/
|
148 |
+
logs/
|
149 |
+
tensorboard/
|
150 |
+
wandb/
|
151 |
+
|
152 |
+
# Data files
|
153 |
+
data/
|
154 |
+
datasets/
|
155 |
+
*.csv
|
156 |
+
*.json
|
157 |
+
*.jsonl
|
158 |
+
*.txt
|
159 |
+
*.tsv
|
160 |
+
*.parquet
|
161 |
+
*.feather
|
162 |
+
|
163 |
+
# spaCy models
|
164 |
+
*.whl
|
165 |
+
|
166 |
+
# Gradio
|
167 |
+
gradio_cached_examples/
|
168 |
+
flagged/
|
169 |
+
|
170 |
+
# Hugging Face
|
171 |
+
.huggingface/
|
172 |
+
huggingface_hub/
|
173 |
+
|
174 |
+
# PyTorch
|
175 |
+
lightning_logs/
|
176 |
+
|
177 |
+
# IDEs
|
178 |
+
.vscode/
|
179 |
+
.idea/
|
180 |
+
*.swp
|
181 |
+
*.swo
|
182 |
+
*~
|
183 |
+
|
184 |
+
# OS
|
185 |
+
.DS_Store
|
186 |
+
.DS_Store?
|
187 |
+
._*
|
188 |
+
.Spotlight-V100
|
189 |
+
.Trashes
|
190 |
+
ehthumbs.db
|
191 |
+
Thumbs.db
|
192 |
+
|
193 |
+
# Temporary files
|
194 |
+
tmp/
|
195 |
+
temp/
|
196 |
+
*.tmp
|
197 |
+
test_*.py
|
198 |
+
*_test.py
|
199 |
+
|
200 |
+
# Backup files
|
201 |
+
*.bak
|
202 |
+
*.backup
|
203 |
+
*.orig
|
204 |
+
|
205 |
+
# Node.js (if using any frontend components)
|
206 |
+
node_modules/
|
207 |
+
npm-debug.log*
|
208 |
+
yarn-debug.log*
|
209 |
+
yarn-error.log*
|
@@ -20,6 +20,31 @@ from PIL import Image
|
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Import real GASM components from core file
|
24 |
try:
|
25 |
# Carefully re-enable GASM import with error isolation
|
@@ -49,22 +74,42 @@ class RealGASMInterface:
|
|
49 |
self.tokenizer = None
|
50 |
self.last_gasm_results = None # Store last results for visualization
|
51 |
|
52 |
-
#
|
53 |
-
self.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
]
|
69 |
|
70 |
self.spatial_relations = {
|
@@ -84,12 +129,86 @@ class RealGASMInterface:
|
|
84 |
}
|
85 |
|
86 |
def extract_entities_from_text(self, text: str) -> List[str]:
|
87 |
-
"""Extract entities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
import re
|
89 |
entities = []
|
90 |
|
91 |
-
#
|
92 |
-
for pattern in self.
|
93 |
matches = re.findall(pattern, text.lower())
|
94 |
if matches:
|
95 |
if isinstance(matches[0], tuple):
|
@@ -99,7 +218,7 @@ class RealGASMInterface:
|
|
99 |
# For simple patterns
|
100 |
entities.extend([match for match in matches if len(match) > 2])
|
101 |
|
102 |
-
#
|
103 |
preposition_patterns = [
|
104 |
r'\b(?:next\s+to|left\s+of|right\s+of|above|below|between|behind|in\s+front\s+of|near|around|inside|outside)\s+(?:the\s+)?([a-zA-Z]{3,})\b',
|
105 |
r'\b(?:neben|links\s+von|rechts\s+von|über|unter|zwischen|hinter|vor|bei|um|in|außen)\s+(?:der|die|das|dem|den)?\s*([a-zA-Z]{3,})\b'
|
@@ -109,23 +228,96 @@ class RealGASMInterface:
|
|
109 |
matches = re.findall(pattern, text.lower())
|
110 |
entities.extend([match for match in matches if len(match) > 2])
|
111 |
|
112 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
stop_words = {
|
114 |
'der', 'die', 'das', 'und', 'oder', 'aber', 'mit', 'von', 'zu', 'in', 'auf', 'für',
|
115 |
'the', 'and', 'or', 'but', 'with', 'from', 'to', 'in', 'on', 'for', 'of', 'at',
|
116 |
'lies', 'sits', 'stands', 'moves', 'flows', 'rotates', 'begins', 'starts',
|
117 |
'liegt', 'sitzt', 'steht', 'bewegt', 'fließt', 'rotiert', 'beginnt', 'startet',
|
118 |
-
'while', 'next', 'left', 'right', 'between', 'above', 'below'
|
|
|
119 |
}
|
120 |
|
121 |
-
# Clean
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
entities = sorted(entities, key=len, reverse=True)
|
127 |
|
128 |
-
return
|
129 |
|
130 |
def extract_relations_from_text(self, text: str) -> List[Dict]:
|
131 |
"""Extract relations from text"""
|
|
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
+
# Import spaCy for advanced NLP
|
24 |
+
try:
|
25 |
+
import spacy
|
26 |
+
from spacy import displacy
|
27 |
+
# Try to load English model
|
28 |
+
nlp = spacy.load("en_core_web_sm")
|
29 |
+
SPACY_AVAILABLE = True
|
30 |
+
logger.info("✅ Successfully loaded spaCy English model")
|
31 |
+
print("✅ spaCy NLP model loaded successfully")
|
32 |
+
except ImportError as e:
|
33 |
+
logger.warning(f"spaCy not available: {e}. Using fallback pattern matching.")
|
34 |
+
SPACY_AVAILABLE = False
|
35 |
+
nlp = None
|
36 |
+
print(f"⚠️ spaCy import failed: {e}")
|
37 |
+
except OSError as e:
|
38 |
+
logger.warning(f"spaCy English model not found: {e}. Using fallback pattern matching.")
|
39 |
+
SPACY_AVAILABLE = False
|
40 |
+
nlp = None
|
41 |
+
print(f"⚠️ spaCy model loading failed: {e}")
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"spaCy initialization failed: {e}. Using fallback pattern matching.")
|
44 |
+
SPACY_AVAILABLE = False
|
45 |
+
nlp = None
|
46 |
+
print(f"❌ spaCy error: {e}")
|
47 |
+
|
48 |
# Import real GASM components from core file
|
49 |
try:
|
50 |
# Carefully re-enable GASM import with error isolation
|
|
|
74 |
self.tokenizer = None
|
75 |
self.last_gasm_results = None # Store last results for visualization
|
76 |
|
77 |
+
# Domain-specific semantic categories for filtering
|
78 |
+
self.semantic_categories = {
|
79 |
+
'physical_objects': {
|
80 |
+
'furniture': ['table', 'chair', 'desk', 'shelf', 'bed', 'sofa', 'cabinet'],
|
81 |
+
'devices': ['computer', 'keyboard', 'monitor', 'screen', 'mouse', 'laptop', 'phone', 'tablet', 'printer', 'scanner', 'camera', 'speaker'],
|
82 |
+
'tools': ['hammer', 'screwdriver', 'wrench', 'drill', 'saw', 'knife'],
|
83 |
+
'containers': ['box', 'bag', 'bottle', 'cup', 'bowl', 'jar', 'basket'],
|
84 |
+
'vehicles': ['car', 'truck', 'bus', 'train', 'plane', 'boat', 'bicycle'],
|
85 |
+
'sports': ['ball', 'bat', 'racket', 'stick', 'net', 'goal']
|
86 |
+
},
|
87 |
+
'technical_objects': {
|
88 |
+
'robotics': ['robot', 'arm', 'sensor', 'motor', 'actuator', 'controller', 'manipulator'],
|
89 |
+
'scientific': ['detector', 'microscope', 'telescope', 'spectrometer', 'analyzer', 'probe'],
|
90 |
+
'industrial': ['reactor', 'turbine', 'compressor', 'pump', 'valve', 'conveyor', 'assembly', 'platform'],
|
91 |
+
'electronic': ['circuit', 'processor', 'memory', 'display', 'antenna', 'battery', 'capacitor']
|
92 |
+
},
|
93 |
+
'spatial_objects': {
|
94 |
+
'architectural': ['room', 'door', 'window', 'wall', 'floor', 'ceiling', 'corner'],
|
95 |
+
'locations': ['center', 'side', 'edge', 'surface', 'space', 'area', 'zone', 'place', 'position', 'spot'],
|
96 |
+
'natural': ['tree', 'rock', 'river', 'mountain', 'field', 'forest', 'lake']
|
97 |
+
},
|
98 |
+
'scientific_entities': {
|
99 |
+
'physics': ['atom', 'electron', 'proton', 'neutron', 'photon', 'molecule', 'particle'],
|
100 |
+
'chemistry': ['crystal', 'compound', 'solution', 'reaction', 'catalyst', 'polymer'],
|
101 |
+
'astronomy': ['satellite', 'planet', 'star', 'galaxy', 'comet', 'asteroid', 'orbit']
|
102 |
+
}
|
103 |
+
}
|
104 |
+
|
105 |
+
# Fallback patterns for when spaCy is not available
|
106 |
+
self.fallback_entity_patterns = [
|
107 |
+
# High-confidence patterns
|
108 |
+
r'\b(robot\w*|arm\w*|satellite\w*|crystal\w*|molecule\w*|atom\w*|electron\w*|detector\w*|sensor\w*|motor\w*)\b',
|
109 |
+
r'\b(ball|table|chair|book|computer|keyboard|monitor|screen|mouse|laptop|desk|lamp|vase|shelf|tv|sofa)\b',
|
110 |
+
r'\b(room|door|window|wall|floor|ceiling|corner|center|side|edge|surface)\b',
|
111 |
+
# German and English article constructions
|
112 |
+
r'\b(?:der|die|das|the)\s+([a-zA-Z]{3,})\b'
|
113 |
]
|
114 |
|
115 |
self.spatial_relations = {
|
|
|
129 |
}
|
130 |
|
131 |
def extract_entities_from_text(self, text: str) -> List[str]:
|
132 |
+
"""Extract entities using advanced NLP with spaCy or intelligent fallback"""
|
133 |
+
|
134 |
+
if SPACY_AVAILABLE and nlp:
|
135 |
+
return self._extract_entities_with_spacy(text)
|
136 |
+
else:
|
137 |
+
return self._extract_entities_fallback(text)
|
138 |
+
|
139 |
+
def _extract_entities_with_spacy(self, text: str) -> List[str]:
|
140 |
+
"""Advanced entity extraction using spaCy NLP"""
|
141 |
+
try:
|
142 |
+
# Process text with spaCy
|
143 |
+
doc = nlp(text)
|
144 |
+
entities = []
|
145 |
+
|
146 |
+
# 1. Extract named entities (NER)
|
147 |
+
for ent in doc.ents:
|
148 |
+
# Filter for relevant entity types
|
149 |
+
if ent.label_ in ['PERSON', 'ORG', 'GPE', 'PRODUCT', 'WORK_OF_ART', 'FAC']:
|
150 |
+
entities.append(ent.text.lower().strip())
|
151 |
+
|
152 |
+
# 2. Extract nouns (POS tagging)
|
153 |
+
for token in doc:
|
154 |
+
if (token.pos_ == 'NOUN' and
|
155 |
+
not token.is_stop and
|
156 |
+
not token.is_punct and
|
157 |
+
len(token.text) > 2):
|
158 |
+
entities.append(token.lemma_.lower().strip())
|
159 |
+
|
160 |
+
# 3. Extract compound nouns and noun phrases
|
161 |
+
for chunk in doc.noun_chunks:
|
162 |
+
# Focus on the head noun of the chunk
|
163 |
+
head_text = chunk.root.lemma_.lower().strip()
|
164 |
+
if len(head_text) > 2 and not chunk.root.is_stop:
|
165 |
+
entities.append(head_text)
|
166 |
+
|
167 |
+
# Also consider the full chunk if it's short and meaningful
|
168 |
+
chunk_text = chunk.text.lower().strip()
|
169 |
+
if (len(chunk_text.split()) <= 2 and
|
170 |
+
len(chunk_text) > 2 and
|
171 |
+
self._is_likely_entity(chunk_text)):
|
172 |
+
entities.append(chunk_text)
|
173 |
+
|
174 |
+
# 4. Extract objects of spatial prepositions
|
175 |
+
spatial_prepositions = {
|
176 |
+
'next', 'left', 'right', 'above', 'below', 'between',
|
177 |
+
'behind', 'front', 'near', 'around', 'inside', 'outside',
|
178 |
+
'on', 'in', 'under', 'over', 'beside'
|
179 |
+
}
|
180 |
+
|
181 |
+
for token in doc:
|
182 |
+
if (token.lemma_.lower() in spatial_prepositions and
|
183 |
+
token.head.pos_ == 'NOUN'):
|
184 |
+
entities.append(token.head.lemma_.lower().strip())
|
185 |
+
|
186 |
+
# Look for objects after spatial prepositions
|
187 |
+
for child in token.children:
|
188 |
+
if (token.lemma_.lower() in spatial_prepositions and
|
189 |
+
child.pos_ == 'NOUN'):
|
190 |
+
entities.append(child.lemma_.lower().strip())
|
191 |
+
|
192 |
+
# 5. Semantic filtering using domain categories
|
193 |
+
filtered_entities = self._filter_entities_semantically(entities)
|
194 |
+
|
195 |
+
# 6. Clean up and deduplicate
|
196 |
+
cleaned_entities = self._clean_and_deduplicate_entities(filtered_entities)
|
197 |
+
|
198 |
+
logger.info(f"spaCy extracted {len(cleaned_entities)} entities from '{text[:50]}...'")
|
199 |
+
return cleaned_entities
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
logger.warning(f"spaCy entity extraction failed: {e}, falling back to patterns")
|
203 |
+
return self._extract_entities_fallback(text)
|
204 |
+
|
205 |
+
def _extract_entities_fallback(self, text: str) -> List[str]:
|
206 |
+
"""Fallback entity extraction using improved pattern matching"""
|
207 |
import re
|
208 |
entities = []
|
209 |
|
210 |
+
# Use fallback patterns
|
211 |
+
for pattern in self.fallback_entity_patterns:
|
212 |
matches = re.findall(pattern, text.lower())
|
213 |
if matches:
|
214 |
if isinstance(matches[0], tuple):
|
|
|
218 |
# For simple patterns
|
219 |
entities.extend([match for match in matches if len(match) > 2])
|
220 |
|
221 |
+
# Extract objects after spatial prepositions
|
222 |
preposition_patterns = [
|
223 |
r'\b(?:next\s+to|left\s+of|right\s+of|above|below|between|behind|in\s+front\s+of|near|around|inside|outside)\s+(?:the\s+)?([a-zA-Z]{3,})\b',
|
224 |
r'\b(?:neben|links\s+von|rechts\s+von|über|unter|zwischen|hinter|vor|bei|um|in|außen)\s+(?:der|die|das|dem|den)?\s*([a-zA-Z]{3,})\b'
|
|
|
228 |
matches = re.findall(pattern, text.lower())
|
229 |
entities.extend([match for match in matches if len(match) > 2])
|
230 |
|
231 |
+
# Semantic filtering and cleanup
|
232 |
+
filtered_entities = self._filter_entities_semantically(entities)
|
233 |
+
cleaned_entities = self._clean_and_deduplicate_entities(filtered_entities)
|
234 |
+
|
235 |
+
logger.info(f"Fallback extracted {len(cleaned_entities)} entities from '{text[:50]}...'")
|
236 |
+
return cleaned_entities
|
237 |
+
|
238 |
+
def _is_likely_entity(self, text: str) -> bool:
|
239 |
+
"""Determine if a text chunk is likely to be a meaningful entity"""
|
240 |
+
# Skip very common words and short words
|
241 |
+
common_words = {'this', 'that', 'these', 'those', 'some', 'many', 'few', 'all', 'each', 'every'}
|
242 |
+
if text.lower() in common_words or len(text) < 3:
|
243 |
+
return False
|
244 |
+
|
245 |
+
# Check if it's in our semantic categories
|
246 |
+
return self._is_in_semantic_categories(text)
|
247 |
+
|
248 |
+
def _is_in_semantic_categories(self, entity: str) -> bool:
|
249 |
+
"""Check if entity belongs to any of our semantic categories"""
|
250 |
+
entity_lower = entity.lower().strip()
|
251 |
+
|
252 |
+
for category, subcategories in self.semantic_categories.items():
|
253 |
+
for subcategory, items in subcategories.items():
|
254 |
+
if entity_lower in items:
|
255 |
+
return True
|
256 |
+
# Also check for partial matches for compound words
|
257 |
+
for item in items:
|
258 |
+
if item in entity_lower or entity_lower in item:
|
259 |
+
return True
|
260 |
+
return False
|
261 |
+
|
262 |
+
def _filter_entities_semantically(self, entities: List[str]) -> List[str]:
|
263 |
+
"""Filter entities based on semantic relevance"""
|
264 |
+
filtered = []
|
265 |
+
|
266 |
+
for entity in entities:
|
267 |
+
entity_clean = entity.lower().strip()
|
268 |
+
|
269 |
+
# Always include if in semantic categories
|
270 |
+
if self._is_in_semantic_categories(entity_clean):
|
271 |
+
filtered.append(entity_clean)
|
272 |
+
continue
|
273 |
+
|
274 |
+
# Include if it's a likely physical object (basic heuristics)
|
275 |
+
if (len(entity_clean) >= 4 and
|
276 |
+
not entity_clean.endswith('ing') and # Exclude gerunds
|
277 |
+
not entity_clean.endswith('ly') and # Exclude adverbs
|
278 |
+
entity_clean.isalpha()): # Only alphabetic
|
279 |
+
filtered.append(entity_clean)
|
280 |
+
|
281 |
+
return filtered
|
282 |
+
|
283 |
+
def _clean_and_deduplicate_entities(self, entities: List[str]) -> List[str]:
|
284 |
+
"""Clean up and deduplicate entity list"""
|
285 |
+
|
286 |
+
# Extended stop words
|
287 |
stop_words = {
|
288 |
'der', 'die', 'das', 'und', 'oder', 'aber', 'mit', 'von', 'zu', 'in', 'auf', 'für',
|
289 |
'the', 'and', 'or', 'but', 'with', 'from', 'to', 'in', 'on', 'for', 'of', 'at',
|
290 |
'lies', 'sits', 'stands', 'moves', 'flows', 'rotates', 'begins', 'starts',
|
291 |
'liegt', 'sitzt', 'steht', 'bewegt', 'fließt', 'rotiert', 'beginnt', 'startet',
|
292 |
+
'while', 'next', 'left', 'right', 'between', 'above', 'below', 'around',
|
293 |
+
'time', 'way', 'thing', 'part', 'case', 'work', 'life', 'world', 'year'
|
294 |
}
|
295 |
|
296 |
+
# Clean and filter
|
297 |
+
cleaned = []
|
298 |
+
for entity in entities:
|
299 |
+
entity_clean = entity.lower().strip()
|
300 |
+
if (entity_clean not in stop_words and
|
301 |
+
len(entity_clean) > 2 and
|
302 |
+
entity_clean.isalpha()):
|
303 |
+
cleaned.append(entity_clean)
|
304 |
+
|
305 |
+
# Deduplicate while preserving order
|
306 |
+
seen = set()
|
307 |
+
deduplicated = []
|
308 |
+
for entity in cleaned:
|
309 |
+
if entity not in seen:
|
310 |
+
seen.add(entity)
|
311 |
+
deduplicated.append(entity)
|
312 |
+
|
313 |
+
# Sort by relevance (semantic category entities first, then by length)
|
314 |
+
def sort_key(entity):
|
315 |
+
is_semantic = self._is_in_semantic_categories(entity)
|
316 |
+
return (not is_semantic, -len(entity)) # Semantic entities first, then longer words
|
317 |
|
318 |
+
deduplicated.sort(key=sort_key)
|
|
|
319 |
|
320 |
+
return deduplicated[:15] # Increase limit to 15 entities
|
321 |
|
322 |
def extract_relations_from_text(self, text: str) -> List[Dict]:
|
323 |
"""Extract relations from text"""
|
@@ -9,4 +9,7 @@ plotly>=5.0.0
|
|
9 |
spaces>=0.19.0
|
10 |
fastapi>=0.100.0
|
11 |
uvicorn>=0.23.0
|
12 |
-
psutil>=5.9.0
|
|
|
|
|
|
|
|
9 |
spaces>=0.19.0
|
10 |
fastapi>=0.100.0
|
11 |
uvicorn>=0.23.0
|
12 |
+
psutil>=5.9.0
|
13 |
+
spacy>=3.7.0
|
14 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl
|
15 |
+
seaborn>=0.11.0
|