File size: 5,208 Bytes
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
2a6c7a8
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffd4543
ff9d83f
 
1cc6224
360450e
1cc6224
360450e
 
1cc6224
360450e
 
1cc6224
ff9d83f
360450e
ff9d83f
1cc6224
 
 
360450e
1cc6224
 
 
 
 
2a6c7a8
1cc6224
 
c897f8b
1cc6224
 
 
 
 
2a6c7a8
1cc6224
2a6c7a8
1cc6224
 
 
 
2a6c7a8
80e4017
1cc6224
 
de54876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a6c7a8
 
1cc6224
 
 
0aa8f43
 
 
 
 
 
 
 
1cc6224
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a college chatbot specialized in providing information on college,scholarships, and mentors."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    try:
        user_message = f"Here's what I found about scholarships: {relevant_segment}"
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-4o", 
            messages=messages,
            max_tokens=500, # can try increasing this if responses are cut off
            temperature=0.5,
            top_p=1,
            frequency_penalty=0.5,
            presence_penalty=0.5,
        )
        
        return response['choices'][0]['message']['content'].strip()
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"
        
def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to ScholarSage! Ask me anything about college, scholarships, or mentors!"
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Sorry, I couldn't find this information! Please refine your question."
    response = generate_response(question, relevant_segment)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# ♟️ Welcome to ScholarSage!

## Your AI-driven assistant for all college-related queries. Created by Sadia, Jinny, and Kristy of the 2024 Kode With Klossy NYC Camp. 
"""

topics = """
### Feel Free to ask me anything from the topics below!
- College
- Scholarships
"""

subtopics = """
### Focus questions on these subtopics:
- List of Colleges in NYS
    - best colleges for CS
    - colleges that meet 100% financial need
    - private
    - public
    - community colleges
- List of Scholarships
    - low income student friendly
    - specific to a certain college
    - national scholarships


"""


# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Column():
        gr.Markdown(topics)  # Show the topics on the left side
        gr.Markdown(subtopics)
    with gr.Column():   
        question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
        answer = gr.Textbox(label="ScholarSage Response", placeholder="ScholarSage will respond here...", interactive=False, lines=10)
        submit_button = gr.Button("Submit")
        submit_button.click(fn=query_model, inputs=question, outputs=answer)
    

# Launch the Gradio app to allow user interaction
demo.launch(share=True)