Spaces:
Sleeping
Sleeping
File size: 7,858 Bytes
1cc6224 2a6c7a8 ff9d83f 1cc6224 ffd4543 ff9d83f 1cc6224 360450e 1cc6224 360450e 1cc6224 360450e 1cc6224 ff9d83f 360450e ff9d83f 1cc6224 360450e 1cc6224 43ba141 1cc6224 43ba141 1cc6224 31abc1a 1cc6224 0eadb80 1cc6224 0eadb80 2a6c7a8 80e4017 1cc6224 de54876 dc30f62 de54876 dc30f62 de54876 2a6c7a8 882135d 1885627 88fcdb6 583c06f 1885627 e7d5c71 1885627 48e431b 43a704c 1885627 e7d5c71 2a6c7a8 1885627 1cc6224 4248900 882135d 1cc6224 ca34ef3 861c286 449b931 ca34ef3 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a college chatbot specialized in providing information on college,scholarships, and mentors."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
try:
user_message = f"Here's what I found about scholarships: {relevant_segment}"
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages,
max_tokens=500, # can try increasing this if responses are cut off
temperature=0.5,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "This is ScholarSage! Ask me anything about college or scholarships!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Sorry, that's not a spell I know of D: I couldn't find the information! Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🪄 Welcome to ScholarSage! 🧙♀️
## An AI-driven wizard for all college-related queries! Created by Sadia, Jinny, and Kristy of the 2024 Kode With Klossy NYC Camp.
"""
topics = """
### Feel Free to ask me anything from the topics below! Reminder that I can only summon info about NY colleges and CS majors. Sorry!
- College
- Scholarships
"""
subtopics = """
### Focus questions on these subtopics:
- List of Colleges in NYS
1. best colleges for CS
2. private
3. public
4. ivy leagues
- List of Scholarships
1. low income student friendly
2. specific to a certain college
3. national scholarships
"""
def display_image():
return "https://huggingface.co/spaces/scholar-sage/Scholar-Sage/resolve/main/Screenshot%202024-08-01%20at%203.04.19%E2%80%AFPM.png"
theme = gr.themes.Soft(
primary_hue="amber",
secondary_hue="rose",
neutral_hue="rose",
).set(
body_text_color='*neutral_500',
background_fill_primary='*primary_50',
border_color_primary='*secondary_400',
block_background_fill='*background_fill_primary',
block_border_width='1px',
block_border_width_dark='1px',
block_label_background_fill='*background_fill_primary',
block_label_background_fill_dark='*background_fill_secondary',
block_label_text_color='*neutral_500',
block_label_text_color_dark='*neutral_200',
block_label_margin='0',
block_label_padding='*spacing_sm *spacing_lg',
block_label_radius='calc(*radius_lg - 1px) 0 calc(*radius_lg - 1px) 0',
block_label_text_size='*text_sm',
block_label_text_weight='400',
block_title_background_fill='none',
block_title_background_fill_dark='none',
block_title_text_color='*neutral_500',
block_title_text_color_dark='*neutral_200',
block_title_padding='0',
block_title_radius='none',
block_title_text_weight='400',
panel_border_width='0',
panel_border_width_dark='0',
input_background_fill='*neutral_100',
input_border_color='*border_color_primary',
input_shadow='none',
input_shadow_dark='none',
input_shadow_focus='*input_shadow',
input_shadow_focus_dark='*input_shadow',
slider_color='#2563eb',
slider_color_dark='#2563eb',
button_shadow='none',
button_shadow_active='none',
button_shadow_hover='none',
button_primary_background_fill='*primary_200',
button_primary_background_fill_hover='*button_primary_background_fill',
button_primary_background_fill_hover_dark='*button_primary_background_fill',
button_primary_text_color='*primary_600',
button_secondary_background_fill='*neutral_200',
button_secondary_background_fill_hover='*button_secondary_background_fill',
button_secondary_background_fill_hover_dark='*button_secondary_background_fill',
button_secondary_text_color='*neutral_700',
button_cancel_background_fill_hover='*button_cancel_background_fill',
button_cancel_background_fill_hover_dark='*button_cancel_background_fill'
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Image(display_image(), container = False, show_share_button = False, show_download_button = False, label="output", show_label=True, elem_id="output_image")
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
gr.Markdown(subtopics)
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="ScholarSage Response", placeholder="ScholarSage will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
demo.launch()
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|