GAIA_AGE / tools.py
ghost
Updated GAIA agent for submission
945d0d0
raw
history blame
8.69 kB
import requests
import pandas as pd
from PIL import Image
import os
import subprocess
from bs4 import BeautifulSoup
import urllib.parse
def web_search(query: str, api_key: str = None) -> str:
"""
Perform web search using SerpAPI if available, otherwise fallback to DuckDuckGo scraping.
"""
if api_key and api_key != "your-serpapi-key-here":
return _serpapi_search(query, api_key)
else:
return _duckduckgo_search(query)
def _serpapi_search(query: str, api_key: str) -> str:
"""Search using SerpAPI."""
try:
url = f"https://serpapi.com/search"
params = {
"q": query,
"api_key": api_key,
"engine": "google"
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
results = response.json()
organic_results = results.get("organic_results", [])
if organic_results:
# Get top 3 results
search_summary = []
for i, result in enumerate(organic_results[:3]):
title = result.get("title", "")
snippet = result.get("snippet", "")
if title and snippet:
search_summary.append(f"{i+1}. {title}: {snippet}")
return "\n".join(search_summary) if search_summary else "No useful results found"
else:
return "No search results found"
except requests.RequestException as e:
print(f"SerpAPI search error: {e}")
return "Search failed"
def _duckduckgo_search(query: str) -> str:
"""Fallback web search using DuckDuckGo scraping."""
try:
# DuckDuckGo instant answer API
url = "https://api.duckduckgo.com/"
params = {
"q": query,
"format": "json",
"no_html": "1",
"skip_disambig": "1"
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
# Try to get instant answer
abstract = data.get("Abstract", "")
if abstract:
return f"Summary: {abstract}"
# Try related topics
related_topics = data.get("RelatedTopics", [])
if related_topics:
summaries = []
for topic in related_topics[:3]:
if isinstance(topic, dict) and "Text" in topic:
summaries.append(topic["Text"])
if summaries:
return "Related information:\n" + "\n".join(summaries)
# Fallback to web scraping (simplified)
return _simple_web_scrape(query)
except Exception as e:
print(f"DuckDuckGo search error: {e}")
return "Search failed"
def _simple_web_scrape(query: str) -> str:
"""Simple web scraping fallback."""
try:
# Use a simple search approach
search_url = f"https://html.duckduckgo.com/html/?q={urllib.parse.quote(query)}"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
}
response = requests.get(search_url, headers=headers, timeout=10)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
# Try to extract some basic information
results = soup.find_all('a', class_='result__snippet')[:3]
if results:
snippets = [r.get_text().strip() for r in results if r.get_text().strip()]
return "\n".join(snippets[:3]) if snippets else "Limited search results available"
return "Basic web search completed - limited results"
except Exception as e:
print(f"Web scraping error: {e}")
return "Web search unavailable"
def read_file(file_name: str) -> str:
"""
Read and process different file types (text, CSV, images).
"""
if not file_name or not os.path.exists(file_name):
return "File not found"
try:
file_extension = os.path.splitext(file_name)[1].lower()
if file_extension == ".csv":
return _read_csv_file(file_name)
elif file_extension in [".png", ".jpg", ".jpeg", ".gif", ".bmp"]:
return _read_image_file(file_name)
elif file_extension in [".txt", ".md", ".py", ".js", ".html", ".json"]:
return _read_text_file(file_name)
else:
# Try to read as text file
return _read_text_file(file_name)
except Exception as e:
return f"Error reading file: {str(e)}"
def _read_text_file(file_name: str) -> str:
"""Read a text file."""
try:
with open(file_name, "r", encoding="utf-8") as f:
content = f.read()
return content[:5000] # Limit to first 5000 characters
except UnicodeDecodeError:
# Try with different encoding
try:
with open(file_name, "r", encoding="latin-1") as f:
content = f.read()
return content[:5000]
except Exception as e:
return f"Text file reading error: {str(e)}"
def _read_csv_file(file_name: str) -> str:
"""Read and summarize a CSV file."""
try:
df = pd.read_csv(file_name)
# Create a summary
summary = []
summary.append(f"CSV file shape: {df.shape[0]} rows, {df.shape[1]} columns")
summary.append(f"Columns: {', '.join(df.columns.tolist())}")
# Show first few rows
summary.append("\nFirst 5 rows:")
summary.append(df.head().to_string())
# Show basic statistics for numeric columns
numeric_columns = df.select_dtypes(include=['number']).columns
if len(numeric_columns) > 0:
summary.append(f"\nNumeric column statistics:")
summary.append(df[numeric_columns].describe().to_string())
return "\n".join(summary)
except Exception as e:
return f"CSV reading error: {str(e)}"
def _read_image_file(file_name: str) -> str:
"""Read and analyze an image file."""
try:
# Try OCR first
try:
import pytesseract
img = Image.open(file_name)
# Get image info
info = f"Image: {img.size[0]}x{img.size[1]} pixels, mode: {img.mode}"
# Try OCR
text = pytesseract.image_to_string(img).strip()
if text:
return f"{info}\n\nExtracted text:\n{text}"
else:
return f"{info}\n\nNo text detected in image."
except ImportError:
# OCR not available, just return image info
img = Image.open(file_name)
return f"Image: {img.size[0]}x{img.size[1]} pixels, mode: {img.mode}\n(OCR not available - install pytesseract for text extraction)"
except Exception as e:
return f"Image reading error: {str(e)}"
def execute_code(code: str, timeout: int = 10) -> str:
"""
Execute Python code safely with timeout.
"""
try:
# Basic security check - prevent dangerous operations
dangerous_keywords = ["import os", "import subprocess", "__import__", "exec", "eval", "open("]
if any(keyword in code.lower() for keyword in dangerous_keywords):
return "Code execution blocked: potentially unsafe operations detected"
result = subprocess.run(
["python3", "-c", code],
capture_output=True,
text=True,
timeout=timeout,
cwd="/tmp" # Run in safe directory
)
if result.returncode == 0:
return result.stdout.strip() if result.stdout else "Code executed successfully (no output)"
else:
return f"Code execution error: {result.stderr.strip()}"
except subprocess.TimeoutExpired:
return "Code execution timeout"
except Exception as e:
return f"Code execution error: {str(e)}"
def calculate_simple_math(expression: str) -> str:
"""
Safely evaluate simple mathematical expressions.
"""
try:
# Only allow basic math characters
allowed_chars = set("0123456789+-*/.() ")
if not all(c in allowed_chars for c in expression):
return "Invalid mathematical expression"
# Use eval safely for basic math
result = eval(expression)
return str(result)
except Exception as e:
return f"Math calculation error: {str(e)}"