choko / app.py
schoolkithub's picture
Update app.py
043cb3a verified
raw
history blame
10.5 kB
import os
import re
import gradio as gr
import requests
import pandas as pd
from huggingface_hub import InferenceClient
from duckduckgo_search import DDGS
import wikipediaapi
from bs4 import BeautifulSoup
import pdfplumber
# ==== CONFIG ====
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.getenv("HF_TOKEN")
GROK_API_KEY = os.getenv("GROK_API_KEY") or "xai-AyJXz3OAAMuQiOrPzPptUWTmsEyI9vywPpbV19S1nCpXXKWoKLqOoGc61RazPPui2fx4Ekb1durXccqz"
CONVERSATIONAL_MODELS = [
"deepseek-ai/DeepSeek-LLM",
"HuggingFaceH4/zephyr-7b-beta",
"mistralai/Mistral-7B-Instruct-v0.2"
]
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
# ==== UTILITY: Link/file detection ====
def extract_links(text):
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
return url_pattern.findall(text)
def download_file(url, out_dir="tmp_files"):
os.makedirs(out_dir, exist_ok=True)
filename = url.split("/")[-1].split("?")[0]
local_path = os.path.join(out_dir, filename)
try:
r = requests.get(url, timeout=20)
r.raise_for_status()
with open(local_path, "wb") as f:
f.write(r.content)
return local_path
except Exception:
return None
# ==== File/Link Analyzers ====
def analyze_file(file_path):
if file_path.endswith((".xlsx", ".xls")):
try:
df = pd.read_excel(file_path)
return f"Excel summary: {df.head().to_markdown(index=False)}"
except Exception as e:
return f"Excel error: {e}"
elif file_path.endswith(".csv"):
try:
df = pd.read_csv(file_path)
return f"CSV summary: {df.head().to_markdown(index=False)}"
except Exception as e:
return f"CSV error: {e}"
elif file_path.endswith(".pdf"):
try:
with pdfplumber.open(file_path) as pdf:
first_page = pdf.pages[0].extract_text()
return f"PDF text sample: {first_page[:1000]}"
except Exception as e:
return f"PDF error: {e}"
elif file_path.endswith(".txt"):
try:
with open(file_path, encoding='utf-8') as f:
txt = f.read()
return f"TXT file sample: {txt[:1000]}"
except Exception as e:
return f"TXT error: {e}"
else:
return f"Unsupported file type: {file_path}"
def analyze_webpage(url):
try:
r = requests.get(url, timeout=15)
soup = BeautifulSoup(r.text, "lxml")
title = soup.title.string if soup.title else "No title"
paragraphs = [p.get_text() for p in soup.find_all("p")]
article_sample = "\n".join(paragraphs[:5])
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1200]}"
except Exception as e:
return f"Webpage error: {e}"
# ==== SEARCH TOOLS ====
def duckduckgo_search(query):
try:
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
bodies = [r.get("body", "") for r in results if r.get("body")]
return "\n".join(bodies) if bodies else None
except Exception:
return None
def wikipedia_search(query):
try:
page = wiki_api.page(query)
if page.exists() and page.summary:
return page.summary
except Exception:
return None
return None
def llm_conversational(query):
last_error = None
for model_id in CONVERSATIONAL_MODELS:
try:
hf_client = InferenceClient(model_id, token=HF_TOKEN)
# Try conversational if available, else fallback to text_generation
if hasattr(hf_client, "conversational"):
result = hf_client.conversational(
messages=[{"role": "user", "content": query}],
max_new_tokens=384,
)
if isinstance(result, dict) and "generated_text" in result:
return result["generated_text"]
elif hasattr(result, "generated_text"):
return result.generated_text
elif isinstance(result, str):
return result
else:
continue
result = hf_client.text_generation(query, max_new_tokens=384)
if isinstance(result, dict) and "generated_text" in result:
return result["generated_text"]
elif isinstance(result, str):
return result
except Exception as e:
last_error = f"{model_id}: {e}"
return None
def is_coding_question(text):
# Basic heuristic: mentions code, function, "python", code blocks, etc.
code_terms = [
"python", "java", "c++", "code", "function", "write a", "script", "algorithm",
"bug", "traceback", "error", "output", "compile", "debug"
]
if any(term in text.lower() for term in code_terms):
return True
if re.search(r"```.+```", text, re.DOTALL):
return True
return False
def grok_completion(question, system_prompt=None):
url = "https://api.x.ai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {GROK_API_KEY}"
}
payload = {
"messages": [
{"role": "system", "content": system_prompt or "You are a helpful coding and research assistant."},
{"role": "user", "content": question}
],
"model": "grok-3-latest",
"stream": False,
"temperature": 0
}
try:
r = requests.post(url, headers=headers, json=payload, timeout=45)
r.raise_for_status()
data = r.json()
# Extract assistant's reply
return data['choices'][0]['message']['content']
except Exception as e:
return None
# ==== SMART AGENT ====
class SmartAgent:
def __init__(self):
pass
def __call__(self, question: str) -> str:
# 1. Handle file/link
links = extract_links(question)
if links:
results = []
for url in links:
if re.search(r"\.xlsx|\.xls|\.csv|\.pdf|\.txt", url):
local = download_file(url)
if local:
file_analysis = analyze_file(local)
results.append(f"File ({url}):\n{file_analysis}")
else:
results.append(analyze_webpage(url))
if results:
return "\n\n".join(results)
# 2. Coding or algorithmic problems? Try Grok FIRST
if is_coding_question(question):
grok_response = grok_completion(question)
if grok_response:
return f"[Grok] {grok_response}"
# 3. DuckDuckGo for web knowledge
result = duckduckgo_search(question)
if result:
return result
# 4. Wikipedia for encyclopedic queries
result = wikipedia_search(question)
if result:
return result
# 5. Grok again for hard/reasoning/general (if not already tried)
if not is_coding_question(question):
grok_response = grok_completion(question)
if grok_response:
return f"[Grok] {grok_response}"
# 6. Fallback to LLM conversational
result = llm_conversational(question)
if result:
return result
return "No answer could be found by available tools."
# ==== SUBMISSION LOGIC ====
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent = SmartAgent()
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# ==== GRADIO UI ====
with gr.Blocks() as demo:
gr.Markdown("# Smart Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, define your agent logic, tools, packages, etc.
2. Log in to Hugging Face.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)