Spaces:
Running
Running
import os | |
import re | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from huggingface_hub import InferenceClient | |
from duckduckgo_search import DDGS | |
import wikipediaapi | |
from bs4 import BeautifulSoup | |
import pdfplumber | |
# ==== CONFIG ==== | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
GROK_API_KEY = os.getenv("GROK_API_KEY") or "xai-AyJXz3OAAMuQiOrPzPptUWTmsEyI9vywPpbV19S1nCpXXKWoKLqOoGc61RazPPui2fx4Ekb1durXccqz" | |
CONVERSATIONAL_MODELS = [ | |
"deepseek-ai/DeepSeek-LLM", | |
"HuggingFaceH4/zephyr-7b-beta", | |
"mistralai/Mistral-7B-Instruct-v0.2" | |
] | |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])") | |
# ==== UTILITY: Link/file detection ==== | |
def extract_links(text): | |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)') | |
return url_pattern.findall(text) | |
def download_file(url, out_dir="tmp_files"): | |
os.makedirs(out_dir, exist_ok=True) | |
filename = url.split("/")[-1].split("?")[0] | |
local_path = os.path.join(out_dir, filename) | |
try: | |
r = requests.get(url, timeout=20) | |
r.raise_for_status() | |
with open(local_path, "wb") as f: | |
f.write(r.content) | |
return local_path | |
except Exception: | |
return None | |
# ==== File/Link Analyzers ==== | |
def analyze_file(file_path): | |
if file_path.endswith((".xlsx", ".xls")): | |
try: | |
df = pd.read_excel(file_path) | |
return f"Excel summary: {df.head().to_markdown(index=False)}" | |
except Exception as e: | |
return f"Excel error: {e}" | |
elif file_path.endswith(".csv"): | |
try: | |
df = pd.read_csv(file_path) | |
return f"CSV summary: {df.head().to_markdown(index=False)}" | |
except Exception as e: | |
return f"CSV error: {e}" | |
elif file_path.endswith(".pdf"): | |
try: | |
with pdfplumber.open(file_path) as pdf: | |
first_page = pdf.pages[0].extract_text() | |
return f"PDF text sample: {first_page[:1000]}" | |
except Exception as e: | |
return f"PDF error: {e}" | |
elif file_path.endswith(".txt"): | |
try: | |
with open(file_path, encoding='utf-8') as f: | |
txt = f.read() | |
return f"TXT file sample: {txt[:1000]}" | |
except Exception as e: | |
return f"TXT error: {e}" | |
else: | |
return f"Unsupported file type: {file_path}" | |
def analyze_webpage(url): | |
try: | |
r = requests.get(url, timeout=15) | |
soup = BeautifulSoup(r.text, "lxml") | |
title = soup.title.string if soup.title else "No title" | |
paragraphs = [p.get_text() for p in soup.find_all("p")] | |
article_sample = "\n".join(paragraphs[:5]) | |
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1200]}" | |
except Exception as e: | |
return f"Webpage error: {e}" | |
# ==== SEARCH TOOLS ==== | |
def duckduckgo_search(query): | |
try: | |
with DDGS() as ddgs: | |
results = [r for r in ddgs.text(query, max_results=3)] | |
bodies = [r.get("body", "") for r in results if r.get("body")] | |
return "\n".join(bodies) if bodies else None | |
except Exception: | |
return None | |
def wikipedia_search(query): | |
try: | |
page = wiki_api.page(query) | |
if page.exists() and page.summary: | |
return page.summary | |
except Exception: | |
return None | |
return None | |
def llm_conversational(query): | |
last_error = None | |
for model_id in CONVERSATIONAL_MODELS: | |
try: | |
hf_client = InferenceClient(model_id, token=HF_TOKEN) | |
# Try conversational if available, else fallback to text_generation | |
if hasattr(hf_client, "conversational"): | |
result = hf_client.conversational( | |
messages=[{"role": "user", "content": query}], | |
max_new_tokens=384, | |
) | |
if isinstance(result, dict) and "generated_text" in result: | |
return result["generated_text"] | |
elif hasattr(result, "generated_text"): | |
return result.generated_text | |
elif isinstance(result, str): | |
return result | |
else: | |
continue | |
result = hf_client.text_generation(query, max_new_tokens=384) | |
if isinstance(result, dict) and "generated_text" in result: | |
return result["generated_text"] | |
elif isinstance(result, str): | |
return result | |
except Exception as e: | |
last_error = f"{model_id}: {e}" | |
return None | |
def is_coding_question(text): | |
# Basic heuristic: mentions code, function, "python", code blocks, etc. | |
code_terms = [ | |
"python", "java", "c++", "code", "function", "write a", "script", "algorithm", | |
"bug", "traceback", "error", "output", "compile", "debug" | |
] | |
if any(term in text.lower() for term in code_terms): | |
return True | |
if re.search(r"```.+```", text, re.DOTALL): | |
return True | |
return False | |
def grok_completion(question, system_prompt=None): | |
url = "https://api.x.ai/v1/chat/completions" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {GROK_API_KEY}" | |
} | |
payload = { | |
"messages": [ | |
{"role": "system", "content": system_prompt or "You are a helpful coding and research assistant."}, | |
{"role": "user", "content": question} | |
], | |
"model": "grok-3-latest", | |
"stream": False, | |
"temperature": 0 | |
} | |
try: | |
r = requests.post(url, headers=headers, json=payload, timeout=45) | |
r.raise_for_status() | |
data = r.json() | |
# Extract assistant's reply | |
return data['choices'][0]['message']['content'] | |
except Exception as e: | |
return None | |
# ==== SMART AGENT ==== | |
class SmartAgent: | |
def __init__(self): | |
pass | |
def __call__(self, question: str) -> str: | |
# 1. Handle file/link | |
links = extract_links(question) | |
if links: | |
results = [] | |
for url in links: | |
if re.search(r"\.xlsx|\.xls|\.csv|\.pdf|\.txt", url): | |
local = download_file(url) | |
if local: | |
file_analysis = analyze_file(local) | |
results.append(f"File ({url}):\n{file_analysis}") | |
else: | |
results.append(analyze_webpage(url)) | |
if results: | |
return "\n\n".join(results) | |
# 2. Coding or algorithmic problems? Try Grok FIRST | |
if is_coding_question(question): | |
grok_response = grok_completion(question) | |
if grok_response: | |
return f"[Grok] {grok_response}" | |
# 3. DuckDuckGo for web knowledge | |
result = duckduckgo_search(question) | |
if result: | |
return result | |
# 4. Wikipedia for encyclopedic queries | |
result = wikipedia_search(question) | |
if result: | |
return result | |
# 5. Grok again for hard/reasoning/general (if not already tried) | |
if not is_coding_question(question): | |
grok_response = grok_completion(question) | |
if grok_response: | |
return f"[Grok] {grok_response}" | |
# 6. Fallback to LLM conversational | |
result = llm_conversational(question) | |
if result: | |
return result | |
return "No answer could be found by available tools." | |
# ==== SUBMISSION LOGIC ==== | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
else: | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
agent = SmartAgent() | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or not question_text: | |
continue | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# ==== GRADIO UI ==== | |
with gr.Blocks() as demo: | |
gr.Markdown("# Smart Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Clone this space, define your agent logic, tools, packages, etc. | |
2. Log in to Hugging Face. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
""") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) | |