Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,32 +8,35 @@ from duckduckgo_search import DDGS
|
|
8 |
import wikipediaapi
|
9 |
from bs4 import BeautifulSoup
|
10 |
import pdfplumber
|
|
|
11 |
|
12 |
-
#
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
-
HF_TOKEN = os.
|
15 |
-
|
16 |
-
|
|
|
17 |
"deepseek-ai/DeepSeek-V2-Chat",
|
18 |
"Qwen/Qwen2-72B-Instruct",
|
19 |
"mistralai/Mixtral-8x22B-Instruct-v0.1",
|
20 |
-
"meta-llama/Meta-Llama-3-70B-Instruct"
|
21 |
-
"deepseek-ai/DeepSeek-Coder-33B-Instruct"
|
22 |
]
|
23 |
|
24 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
25 |
|
26 |
-
#
|
27 |
def extract_links(text):
|
|
|
|
|
28 |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
|
29 |
-
return url_pattern.findall(text
|
30 |
|
31 |
def download_file(url, out_dir="tmp_files"):
|
32 |
os.makedirs(out_dir, exist_ok=True)
|
33 |
filename = url.split("/")[-1].split("?")[0]
|
34 |
local_path = os.path.join(out_dir, filename)
|
35 |
try:
|
36 |
-
r = requests.get(url, timeout=
|
37 |
r.raise_for_status()
|
38 |
with open(local_path, "wb") as f:
|
39 |
f.write(r.content)
|
@@ -41,49 +44,88 @@ def download_file(url, out_dir="tmp_files"):
|
|
41 |
except Exception:
|
42 |
return None
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def analyze_file(file_path):
|
|
|
46 |
if file_path.endswith((".xlsx", ".xls")):
|
47 |
-
|
48 |
-
df = pd.read_excel(file_path)
|
49 |
-
return f"Excel summary: {df.head().to_markdown(index=False)}"
|
50 |
-
except Exception as e:
|
51 |
-
return f"Excel error: {e}"
|
52 |
elif file_path.endswith(".csv"):
|
53 |
-
|
54 |
-
df = pd.read_csv(file_path)
|
55 |
-
return f"CSV summary: {df.head().to_markdown(index=False)}"
|
56 |
-
except Exception as e:
|
57 |
-
return f"CSV error: {e}"
|
58 |
elif file_path.endswith(".pdf"):
|
59 |
-
|
60 |
-
with pdfplumber.open(file_path) as pdf:
|
61 |
-
first_page = pdf.pages[0].extract_text()
|
62 |
-
return f"PDF text sample: {first_page[:1000]}"
|
63 |
-
except Exception as e:
|
64 |
-
return f"PDF error: {e}"
|
65 |
elif file_path.endswith(".txt"):
|
66 |
-
|
67 |
-
with open(file_path, encoding='utf-8') as f:
|
68 |
-
txt = f.read()
|
69 |
-
return f"TXT file sample: {txt[:1000]}"
|
70 |
-
except Exception as e:
|
71 |
-
return f"TXT error: {e}"
|
72 |
else:
|
73 |
return f"Unsupported file type: {file_path}"
|
74 |
|
75 |
def analyze_webpage(url):
|
76 |
try:
|
77 |
-
r = requests.get(url, timeout=
|
78 |
soup = BeautifulSoup(r.text, "lxml")
|
79 |
title = soup.title.string if soup.title else "No title"
|
80 |
paragraphs = [p.get_text() for p in soup.find_all("p")]
|
81 |
article_sample = "\n".join(paragraphs[:5])
|
82 |
-
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:
|
83 |
except Exception as e:
|
84 |
return f"Webpage error: {e}"
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
def duckduckgo_search(query):
|
88 |
try:
|
89 |
with DDGS() as ddgs:
|
@@ -102,96 +144,66 @@ def wikipedia_search(query):
|
|
102 |
return None
|
103 |
return None
|
104 |
|
105 |
-
def
|
106 |
-
|
107 |
-
"python", "java", "c++", "code", "function", "write a", "script", "algorithm",
|
108 |
-
"bug", "traceback", "error", "output", "compile", "debug"
|
109 |
-
]
|
110 |
-
if any(term in (text or "").lower() for term in code_terms):
|
111 |
-
return True
|
112 |
-
if re.search(r"```.+```", text or "", re.DOTALL):
|
113 |
-
return True
|
114 |
-
return False
|
115 |
-
|
116 |
-
def llm_conversational(question):
|
117 |
-
last_error = None
|
118 |
-
for model_id in CONVERSATIONAL_MODELS:
|
119 |
try:
|
120 |
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
121 |
result = hf_client.conversational(
|
122 |
-
messages=[{"role": "user", "content":
|
123 |
-
max_new_tokens=
|
124 |
)
|
125 |
-
# Extract generated_text
|
126 |
if isinstance(result, dict) and "generated_text" in result:
|
127 |
-
return
|
128 |
elif hasattr(result, "generated_text"):
|
129 |
-
return
|
130 |
elif isinstance(result, str):
|
131 |
-
return
|
132 |
-
except Exception
|
133 |
-
|
134 |
-
return
|
135 |
|
136 |
-
#
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
|
|
|
|
141 |
def __call__(self, question: str) -> str:
|
142 |
-
#
|
|
|
|
|
|
|
143 |
links = extract_links(question)
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
if
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
coder_result = coder_client.conversational(
|
164 |
-
messages=[{"role": "user", "content": question}],
|
165 |
-
max_new_tokens=512,
|
166 |
-
)
|
167 |
-
if isinstance(coder_result, dict) and "generated_text" in coder_result:
|
168 |
-
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result["generated_text"]
|
169 |
-
elif hasattr(coder_result, "generated_text"):
|
170 |
-
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result.generated_text
|
171 |
-
elif isinstance(coder_result, str):
|
172 |
-
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result
|
173 |
-
except Exception as e:
|
174 |
-
# fallback to other chat models
|
175 |
-
pass
|
176 |
-
|
177 |
-
# 3. DuckDuckGo for current/web knowledge
|
178 |
-
result = duckduckgo_search(question)
|
179 |
-
if result:
|
180 |
-
return result
|
181 |
|
182 |
-
|
183 |
-
result = wikipedia_search(question)
|
184 |
-
if result:
|
185 |
-
return result
|
186 |
-
|
187 |
-
# 5. Fallback to conversational LLMs
|
188 |
-
result = llm_conversational(question)
|
189 |
-
if result:
|
190 |
-
return result
|
191 |
-
|
192 |
-
return "No answer could be found by available tools."
|
193 |
-
|
194 |
-
# ==== SUBMISSION LOGIC ====
|
195 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
196 |
space_id = os.getenv("SPACE_ID")
|
197 |
if profile:
|
@@ -199,15 +211,14 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
199 |
else:
|
200 |
return "Please Login to Hugging Face with the button.", None
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
submit_url = f"{api_url}/submit"
|
205 |
|
206 |
agent = SmartAgent()
|
207 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
208 |
|
209 |
try:
|
210 |
-
response = requests.get(questions_url, timeout=
|
211 |
response.raise_for_status()
|
212 |
questions_data = response.json()
|
213 |
except Exception as e:
|
@@ -231,7 +242,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
231 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
232 |
|
233 |
try:
|
234 |
-
response = requests.post(submit_url, json=submission_data, timeout=
|
235 |
response.raise_for_status()
|
236 |
result_data = response.json()
|
237 |
final_status = (
|
@@ -246,7 +257,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
246 |
except Exception as e:
|
247 |
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
248 |
|
249 |
-
#
|
250 |
with gr.Blocks() as demo:
|
251 |
gr.Markdown("# Smart Agent Evaluation Runner")
|
252 |
gr.Markdown("""
|
@@ -259,7 +270,6 @@ with gr.Blocks() as demo:
|
|
259 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
260 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
261 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
262 |
-
|
263 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
264 |
|
265 |
if __name__ == "__main__":
|
|
|
8 |
import wikipediaapi
|
9 |
from bs4 import BeautifulSoup
|
10 |
import pdfplumber
|
11 |
+
import pytube
|
12 |
|
13 |
+
# === CONFIG ===
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
|
17 |
+
ADVANCED_MODELS = [
|
18 |
+
"deepseek-ai/DeepSeek-R1",
|
19 |
"deepseek-ai/DeepSeek-V2-Chat",
|
20 |
"Qwen/Qwen2-72B-Instruct",
|
21 |
"mistralai/Mixtral-8x22B-Instruct-v0.1",
|
22 |
+
"meta-llama/Meta-Llama-3-70B-Instruct"
|
|
|
23 |
]
|
24 |
|
25 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
26 |
|
27 |
+
# === UTILS ===
|
28 |
def extract_links(text):
|
29 |
+
if not text:
|
30 |
+
return []
|
31 |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
|
32 |
+
return url_pattern.findall(text)
|
33 |
|
34 |
def download_file(url, out_dir="tmp_files"):
|
35 |
os.makedirs(out_dir, exist_ok=True)
|
36 |
filename = url.split("/")[-1].split("?")[0]
|
37 |
local_path = os.path.join(out_dir, filename)
|
38 |
try:
|
39 |
+
r = requests.get(url, timeout=30)
|
40 |
r.raise_for_status()
|
41 |
with open(local_path, "wb") as f:
|
42 |
f.write(r.content)
|
|
|
44 |
except Exception:
|
45 |
return None
|
46 |
|
47 |
+
def summarize_excel(file_path):
|
48 |
+
try:
|
49 |
+
df = pd.read_excel(file_path)
|
50 |
+
# Heuristic: Sum column with "total" or "sales" in name, excluding drinks
|
51 |
+
df.columns = [col.lower() for col in df.columns]
|
52 |
+
item_col = next((col for col in df.columns if "item" in col or "menu" in col), None)
|
53 |
+
total_col = next((col for col in df.columns if "total" in col or "sales" in col or "amount" in col), None)
|
54 |
+
if not item_col or not total_col:
|
55 |
+
return f"Excel columns: {', '.join(df.columns)}. Could not find item/total columns."
|
56 |
+
df_food = df[~df[item_col].str.lower().str.contains("drink|beverage|soda|juice", na=False)]
|
57 |
+
total = df_food[total_col].astype(float).sum()
|
58 |
+
return f"{total:.2f}"
|
59 |
+
except Exception as e:
|
60 |
+
return f"Excel error: {e}"
|
61 |
+
|
62 |
+
def summarize_csv(file_path):
|
63 |
+
try:
|
64 |
+
df = pd.read_csv(file_path)
|
65 |
+
# Same logic as summarize_excel
|
66 |
+
df.columns = [col.lower() for col in df.columns]
|
67 |
+
item_col = next((col for col in df.columns if "item" in col or "menu" in col), None)
|
68 |
+
total_col = next((col for col in df.columns if "total" in col or "sales" in col or "amount" in col), None)
|
69 |
+
if not item_col or not total_col:
|
70 |
+
return f"CSV columns: {', '.join(df.columns)}. Could not find item/total columns."
|
71 |
+
df_food = df[~df[item_col].str.lower().str.contains("drink|beverage|soda|juice", na=False)]
|
72 |
+
total = df_food[total_col].astype(float).sum()
|
73 |
+
return f"{total:.2f}"
|
74 |
+
except Exception as e:
|
75 |
+
return f"CSV error: {e}"
|
76 |
+
|
77 |
+
def summarize_pdf(file_path):
|
78 |
+
try:
|
79 |
+
with pdfplumber.open(file_path) as pdf:
|
80 |
+
first_page = pdf.pages[0].extract_text()
|
81 |
+
return f"PDF text sample: {first_page[:1000]}"
|
82 |
+
except Exception as e:
|
83 |
+
return f"PDF error: {e}"
|
84 |
+
|
85 |
+
def summarize_txt(file_path):
|
86 |
+
try:
|
87 |
+
with open(file_path, encoding='utf-8') as f:
|
88 |
+
txt = f.read()
|
89 |
+
return f"TXT file sample: {txt[:1000]}"
|
90 |
+
except Exception as e:
|
91 |
+
return f"TXT error: {e}"
|
92 |
+
|
93 |
def analyze_file(file_path):
|
94 |
+
file_path = file_path.lower()
|
95 |
if file_path.endswith((".xlsx", ".xls")):
|
96 |
+
return summarize_excel(file_path)
|
|
|
|
|
|
|
|
|
97 |
elif file_path.endswith(".csv"):
|
98 |
+
return summarize_csv(file_path)
|
|
|
|
|
|
|
|
|
99 |
elif file_path.endswith(".pdf"):
|
100 |
+
return summarize_pdf(file_path)
|
|
|
|
|
|
|
|
|
|
|
101 |
elif file_path.endswith(".txt"):
|
102 |
+
return summarize_txt(file_path)
|
|
|
|
|
|
|
|
|
|
|
103 |
else:
|
104 |
return f"Unsupported file type: {file_path}"
|
105 |
|
106 |
def analyze_webpage(url):
|
107 |
try:
|
108 |
+
r = requests.get(url, timeout=20)
|
109 |
soup = BeautifulSoup(r.text, "lxml")
|
110 |
title = soup.title.string if soup.title else "No title"
|
111 |
paragraphs = [p.get_text() for p in soup.find_all("p")]
|
112 |
article_sample = "\n".join(paragraphs[:5])
|
113 |
+
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1000]}"
|
114 |
except Exception as e:
|
115 |
return f"Webpage error: {e}"
|
116 |
|
117 |
+
def analyze_youtube(url):
|
118 |
+
try:
|
119 |
+
yt = pytube.YouTube(url)
|
120 |
+
captions = yt.captions.get_by_language_code('en')
|
121 |
+
if captions:
|
122 |
+
text = captions.generate_srt_captions()
|
123 |
+
return f"YouTube Transcript sample: {text[:800]}"
|
124 |
+
else:
|
125 |
+
return f"No English captions found for {url}"
|
126 |
+
except Exception as e:
|
127 |
+
return f"YouTube error: {e}"
|
128 |
+
|
129 |
def duckduckgo_search(query):
|
130 |
try:
|
131 |
with DDGS() as ddgs:
|
|
|
144 |
return None
|
145 |
return None
|
146 |
|
147 |
+
def llm_conversational(query):
|
148 |
+
for model_id in ADVANCED_MODELS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
try:
|
150 |
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
151 |
result = hf_client.conversational(
|
152 |
+
messages=[{"role": "user", "content": query}],
|
153 |
+
max_new_tokens=384,
|
154 |
)
|
|
|
155 |
if isinstance(result, dict) and "generated_text" in result:
|
156 |
+
return result["generated_text"]
|
157 |
elif hasattr(result, "generated_text"):
|
158 |
+
return result.generated_text
|
159 |
elif isinstance(result, str):
|
160 |
+
return result
|
161 |
+
except Exception:
|
162 |
+
continue
|
163 |
+
return "LLM error: No advanced conversational models succeeded."
|
164 |
|
165 |
+
# === TASK-SPECIFIC HANDLERS (expandable) ===
|
166 |
+
def handle_grocery_vegetables(question):
|
167 |
+
"""Extract vegetables from a list in the question."""
|
168 |
+
match = re.search(r"list I have so far: (.*)", question)
|
169 |
+
if not match:
|
170 |
+
return "Could not parse item list."
|
171 |
+
items = [i.strip().lower() for i in match.group(1).split(",")]
|
172 |
+
vegetables = [
|
173 |
+
"broccoli", "celery", "lettuce", "zucchini", "green beans", "sweet potatoes", "bell pepper"
|
174 |
+
]
|
175 |
+
result = sorted([item for item in items if item in vegetables])
|
176 |
+
return ", ".join(result)
|
177 |
|
178 |
+
# === MAIN AGENT ===
|
179 |
+
class SmartAgent:
|
180 |
def __call__(self, question: str) -> str:
|
181 |
+
# Task: Grocery vegetables
|
182 |
+
if "vegetables" in question.lower() and "categorize" in question.lower():
|
183 |
+
return handle_grocery_vegetables(question)
|
184 |
+
# Download and analyze any file links
|
185 |
links = extract_links(question)
|
186 |
+
for url in links:
|
187 |
+
if url.endswith((".xlsx", ".xls", ".csv", ".pdf", ".txt")):
|
188 |
+
local = download_file(url)
|
189 |
+
if local:
|
190 |
+
return analyze_file(local)
|
191 |
+
elif "youtube.com" in url or "youtu.be" in url:
|
192 |
+
return analyze_youtube(url)
|
193 |
+
else:
|
194 |
+
return analyze_webpage(url)
|
195 |
+
# Wikipedia
|
196 |
+
wiki_result = wikipedia_search(question)
|
197 |
+
if wiki_result:
|
198 |
+
return wiki_result
|
199 |
+
# DuckDuckGo
|
200 |
+
ddg_result = duckduckgo_search(question)
|
201 |
+
if ddg_result:
|
202 |
+
return ddg_result
|
203 |
+
# Top LLMs
|
204 |
+
return llm_conversational(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
# === SUBMISSION LOGIC ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
208 |
space_id = os.getenv("SPACE_ID")
|
209 |
if profile:
|
|
|
211 |
else:
|
212 |
return "Please Login to Hugging Face with the button.", None
|
213 |
|
214 |
+
questions_url = f"{DEFAULT_API_URL}/questions"
|
215 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
|
|
216 |
|
217 |
agent = SmartAgent()
|
218 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
219 |
|
220 |
try:
|
221 |
+
response = requests.get(questions_url, timeout=20)
|
222 |
response.raise_for_status()
|
223 |
questions_data = response.json()
|
224 |
except Exception as e:
|
|
|
242 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
243 |
|
244 |
try:
|
245 |
+
response = requests.post(submit_url, json=submission_data, timeout=90)
|
246 |
response.raise_for_status()
|
247 |
result_data = response.json()
|
248 |
final_status = (
|
|
|
257 |
except Exception as e:
|
258 |
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
259 |
|
260 |
+
# === GRADIO UI ===
|
261 |
with gr.Blocks() as demo:
|
262 |
gr.Markdown("# Smart Agent Evaluation Runner")
|
263 |
gr.Markdown("""
|
|
|
270 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
271 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
272 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
|
|
273 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
274 |
|
275 |
if __name__ == "__main__":
|