Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,17 +12,19 @@ import pdfplumber
|
|
12 |
# ==== CONFIG ====
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
-
GROK_API_KEY = os.getenv("GROK_API_KEY")
|
16 |
|
|
|
17 |
CONVERSATIONAL_MODELS = [
|
18 |
-
"deepseek-ai/DeepSeek-
|
19 |
-
"
|
20 |
-
"mistralai/
|
|
|
21 |
]
|
|
|
22 |
|
23 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
24 |
|
25 |
-
# ====
|
26 |
def extract_links(text):
|
27 |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
|
28 |
return url_pattern.findall(text or "")
|
@@ -40,36 +42,26 @@ def download_file(url, out_dir="tmp_files"):
|
|
40 |
except Exception:
|
41 |
return None
|
42 |
|
43 |
-
# ==== File/Link Analyzers ====
|
44 |
def analyze_file(file_path):
|
45 |
-
|
46 |
-
|
47 |
df = pd.read_excel(file_path)
|
48 |
return f"Excel summary: {df.head().to_markdown(index=False)}"
|
49 |
-
|
50 |
-
return f"Excel error: {e}"
|
51 |
-
elif file_path.endswith(".csv"):
|
52 |
-
try:
|
53 |
df = pd.read_csv(file_path)
|
54 |
return f"CSV summary: {df.head().to_markdown(index=False)}"
|
55 |
-
|
56 |
-
return f"CSV error: {e}"
|
57 |
-
elif file_path.endswith(".pdf"):
|
58 |
-
try:
|
59 |
with pdfplumber.open(file_path) as pdf:
|
60 |
first_page = pdf.pages[0].extract_text()
|
61 |
return f"PDF text sample: {first_page[:1000]}"
|
62 |
-
|
63 |
-
return f"PDF error: {e}"
|
64 |
-
elif file_path.endswith(".txt"):
|
65 |
-
try:
|
66 |
with open(file_path, encoding='utf-8') as f:
|
67 |
txt = f.read()
|
68 |
return f"TXT file sample: {txt[:1000]}"
|
69 |
-
|
70 |
-
return f"
|
71 |
-
|
72 |
-
return f"
|
73 |
|
74 |
def analyze_webpage(url):
|
75 |
try:
|
@@ -82,7 +74,6 @@ def analyze_webpage(url):
|
|
82 |
except Exception as e:
|
83 |
return f"Webpage error: {e}"
|
84 |
|
85 |
-
# ==== SEARCH TOOLS ====
|
86 |
def duckduckgo_search(query):
|
87 |
try:
|
88 |
with DDGS() as ddgs:
|
@@ -101,39 +92,6 @@ def wikipedia_search(query):
|
|
101 |
return None
|
102 |
return None
|
103 |
|
104 |
-
def llm_conversational(query):
|
105 |
-
last_error = None
|
106 |
-
for model_id in CONVERSATIONAL_MODELS:
|
107 |
-
try:
|
108 |
-
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
109 |
-
# Try conversational if available, else fallback to text_generation
|
110 |
-
if hasattr(hf_client, "conversational"):
|
111 |
-
try:
|
112 |
-
result = hf_client.conversational(
|
113 |
-
messages=[{"role": "user", "content": query}],
|
114 |
-
max_new_tokens=384,
|
115 |
-
)
|
116 |
-
if isinstance(result, dict) and "generated_text" in result:
|
117 |
-
return result["generated_text"]
|
118 |
-
elif hasattr(result, "generated_text"):
|
119 |
-
return result.generated_text
|
120 |
-
elif isinstance(result, str):
|
121 |
-
return result
|
122 |
-
except Exception:
|
123 |
-
pass
|
124 |
-
# Fallback to text_generation
|
125 |
-
try:
|
126 |
-
result = hf_client.text_generation(query, max_new_tokens=384)
|
127 |
-
if isinstance(result, dict) and "generated_text" in result:
|
128 |
-
return result["generated_text"]
|
129 |
-
elif isinstance(result, str):
|
130 |
-
return result
|
131 |
-
except Exception:
|
132 |
-
pass
|
133 |
-
except Exception as e:
|
134 |
-
last_error = f"{model_id}: {e}"
|
135 |
-
return None
|
136 |
-
|
137 |
def is_coding_question(text):
|
138 |
code_terms = [
|
139 |
"python", "java", "c++", "code", "function", "write a", "script", "algorithm",
|
@@ -145,28 +103,31 @@ def is_coding_question(text):
|
|
145 |
return True
|
146 |
return False
|
147 |
|
148 |
-
def
|
149 |
-
url = "https://api.x.ai/v1/chat/completions"
|
150 |
-
headers = {
|
151 |
-
"Content-Type": "application/json",
|
152 |
-
"Authorization": f"Bearer {GROK_API_KEY}"
|
153 |
-
}
|
154 |
-
payload = {
|
155 |
-
"messages": [
|
156 |
-
{"role": "system", "content": system_prompt or "You are a helpful coding and research assistant."},
|
157 |
-
{"role": "user", "content": question}
|
158 |
-
],
|
159 |
-
"model": "grok-3-latest",
|
160 |
-
"stream": False,
|
161 |
-
"temperature": 0
|
162 |
-
}
|
163 |
try:
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
# ==== SMART AGENT ====
|
172 |
class SmartAgent:
|
@@ -191,31 +152,28 @@ class SmartAgent:
|
|
191 |
if results:
|
192 |
return "\n\n".join(results)
|
193 |
|
194 |
-
# 2.
|
195 |
if is_coding_question(question):
|
196 |
-
|
197 |
-
if
|
198 |
-
return
|
199 |
|
200 |
-
# 3. DuckDuckGo for web
|
201 |
result = duckduckgo_search(question)
|
202 |
if result:
|
203 |
return result
|
204 |
-
|
|
|
205 |
result = wikipedia_search(question)
|
206 |
if result:
|
207 |
return result
|
208 |
-
# 5. Grok again for hard/reasoning/general (if not already tried)
|
209 |
-
if not is_coding_question(question):
|
210 |
-
grok_response = grok_completion(question)
|
211 |
-
if grok_response:
|
212 |
-
return f"[Grok] {grok_response}"
|
213 |
|
214 |
-
#
|
215 |
result = llm_conversational(question)
|
216 |
if result:
|
217 |
return result
|
218 |
-
|
|
|
219 |
|
220 |
# ==== SUBMISSION LOGIC ====
|
221 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
12 |
# ==== CONFIG ====
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
15 |
|
16 |
+
# SOTA models: for general and code queries
|
17 |
CONVERSATIONAL_MODELS = [
|
18 |
+
"deepseek-ai/DeepSeek-V2-Chat",
|
19 |
+
"Qwen/Qwen2-72B-Instruct",
|
20 |
+
"mistralai/Mixtral-8x22B-Instruct-v0.1",
|
21 |
+
"meta-llama/Meta-Llama-3-70B-Instruct"
|
22 |
]
|
23 |
+
CODING_MODEL = "deepseek-ai/DeepSeek-Coder-33B-Instruct"
|
24 |
|
25 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
26 |
|
27 |
+
# ==== UTILITIES ====
|
28 |
def extract_links(text):
|
29 |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
|
30 |
return url_pattern.findall(text or "")
|
|
|
42 |
except Exception:
|
43 |
return None
|
44 |
|
|
|
45 |
def analyze_file(file_path):
|
46 |
+
try:
|
47 |
+
if file_path.endswith((".xlsx", ".xls")):
|
48 |
df = pd.read_excel(file_path)
|
49 |
return f"Excel summary: {df.head().to_markdown(index=False)}"
|
50 |
+
elif file_path.endswith(".csv"):
|
|
|
|
|
|
|
51 |
df = pd.read_csv(file_path)
|
52 |
return f"CSV summary: {df.head().to_markdown(index=False)}"
|
53 |
+
elif file_path.endswith(".pdf"):
|
|
|
|
|
|
|
54 |
with pdfplumber.open(file_path) as pdf:
|
55 |
first_page = pdf.pages[0].extract_text()
|
56 |
return f"PDF text sample: {first_page[:1000]}"
|
57 |
+
elif file_path.endswith(".txt"):
|
|
|
|
|
|
|
58 |
with open(file_path, encoding='utf-8') as f:
|
59 |
txt = f.read()
|
60 |
return f"TXT file sample: {txt[:1000]}"
|
61 |
+
else:
|
62 |
+
return f"Unsupported file type: {file_path}"
|
63 |
+
except Exception as e:
|
64 |
+
return f"File analysis error: {e}"
|
65 |
|
66 |
def analyze_webpage(url):
|
67 |
try:
|
|
|
74 |
except Exception as e:
|
75 |
return f"Webpage error: {e}"
|
76 |
|
|
|
77 |
def duckduckgo_search(query):
|
78 |
try:
|
79 |
with DDGS() as ddgs:
|
|
|
92 |
return None
|
93 |
return None
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
def is_coding_question(text):
|
96 |
code_terms = [
|
97 |
"python", "java", "c++", "code", "function", "write a", "script", "algorithm",
|
|
|
103 |
return True
|
104 |
return False
|
105 |
|
106 |
+
def llm_coder(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
try:
|
108 |
+
hf_client = InferenceClient(CODING_MODEL, token=HF_TOKEN)
|
109 |
+
result = hf_client.text_generation(query, max_new_tokens=1024)
|
110 |
+
if isinstance(result, dict) and "generated_text" in result:
|
111 |
+
return f"[{CODING_MODEL}] {result['generated_text']}"
|
112 |
+
elif isinstance(result, str):
|
113 |
+
return f"[{CODING_MODEL}] {result}"
|
114 |
+
return "Unknown result format from coder model."
|
115 |
+
except Exception as e:
|
116 |
+
return f"Coder Model Error: {e}"
|
117 |
+
|
118 |
+
def llm_conversational(query):
|
119 |
+
last_error = None
|
120 |
+
for model_id in CONVERSATIONAL_MODELS:
|
121 |
+
try:
|
122 |
+
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
123 |
+
result = hf_client.text_generation(query, max_new_tokens=512)
|
124 |
+
if isinstance(result, dict) and "generated_text" in result:
|
125 |
+
return f"[{model_id}] {result['generated_text']}"
|
126 |
+
elif isinstance(result, str):
|
127 |
+
return f"[{model_id}] {result}"
|
128 |
+
except Exception as e:
|
129 |
+
last_error = f"{model_id}: {e}"
|
130 |
+
return f"LLM Error (all advanced models): {last_error or 'Unknown error'}"
|
131 |
|
132 |
# ==== SMART AGENT ====
|
133 |
class SmartAgent:
|
|
|
152 |
if results:
|
153 |
return "\n\n".join(results)
|
154 |
|
155 |
+
# 2. Code/coding questions: use coder model
|
156 |
if is_coding_question(question):
|
157 |
+
result = llm_coder(question)
|
158 |
+
if result:
|
159 |
+
return result
|
160 |
|
161 |
+
# 3. DuckDuckGo for fresh web results
|
162 |
result = duckduckgo_search(question)
|
163 |
if result:
|
164 |
return result
|
165 |
+
|
166 |
+
# 4. Wikipedia for encyclopedic facts
|
167 |
result = wikipedia_search(question)
|
168 |
if result:
|
169 |
return result
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
# 5. General QA, reasoning, or fallback: conversational SOTA models
|
172 |
result = llm_conversational(question)
|
173 |
if result:
|
174 |
return result
|
175 |
+
|
176 |
+
return "No answer could be found by available models."
|
177 |
|
178 |
# ==== SUBMISSION LOGIC ====
|
179 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|