Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
""" | |
π Enhanced GAIA Agent Interface - Full API Integration | |
Complete Gradio interface for GAIA benchmark with API connectivity and scoring | |
""" | |
import os | |
import gradio as gr | |
import json | |
from datetime import datetime | |
from gaia_agent import ModularGAIAAgent | |
import requests | |
import inspect | |
import pandas as pd | |
agent = ModularGAIAAgent() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent (GAIA Modular Agent) initialized.") | |
self.agent = ModularGAIAAgent() | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
try: | |
answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name": ""}) | |
print(f"Agent returning answer: {answer}") | |
return answer | |
except Exception as e: | |
print(f"Agent error: {e}") | |
return f"AGENT ERROR: {e}" | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
def show_help(): | |
return ( | |
"# Agent Capabilities\n" | |
"- Multi-modal QA (text, audio, image, code, table, YouTube/video)\n" | |
"- File download and analysis from API\n" | |
"- Advanced video QA: object detection, captioning, ASR\n" | |
"- Secure code execution\n" | |
"- Robust error handling and logging\n" | |
"- GAIA-compliant output\n" | |
"\nSee README.md for full details." | |
) | |
def submit_answers(username, agent_code_url): | |
# Placeholder for submission logic | |
return f"Submission for {username} with code {agent_code_url} (not implemented in demo)" | |
def show_leaderboard(): | |
# Placeholder for leaderboard logic | |
return "Leaderboard feature coming soon." | |
demo = gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft()) | |
with demo: | |
gr.Markdown(""" | |
# π€ GAIA Benchmark Agent | |
Multi-modal, multi-step reasoning agent for the Hugging Face GAIA benchmark. | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("API Q&A"): | |
api_btn = gr.Button("Run on API Questions", variant="primary") | |
api_output = gr.Textbox(label="Answers and Reasoning Trace", lines=20) | |
api_btn.click(run_api_questions, outputs=api_output) | |
with gr.TabItem("Manual Input"): | |
manual_q = gr.Textbox(label="Enter your question", lines=3) | |
manual_btn = gr.Button("Answer", variant="primary") | |
manual_a = gr.Textbox(label="Answer") | |
manual_trace = gr.Textbox(label="Reasoning Trace", lines=5) | |
manual_btn.click(run_manual_question, inputs=manual_q, outputs=[manual_a, manual_trace]) | |
with gr.TabItem("Submission/Leaderboard"): | |
username = gr.Textbox(label="Hugging Face Username") | |
code_url = gr.Textbox(label="Agent Code URL") | |
submit_btn = gr.Button("Submit Answers", variant="primary") | |
submit_out = gr.Textbox(label="Submission Result") | |
submit_btn.click(submit_answers, inputs=[username, code_url], outputs=submit_out) | |
leaderboard_btn = gr.Button("Show Leaderboard") | |
leaderboard_out = gr.Textbox(label="Leaderboard") | |
leaderboard_btn.click(show_leaderboard, outputs=leaderboard_out) | |
with gr.TabItem("Agent Help"): | |
help_md = gr.Markdown(show_help()) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"β SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"β SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |