Omachoko commited on
Commit
2d95e30
·
1 Parent(s): 30baeaa

Integrate ModularGAIAAgent into evaluation runner architecture

Browse files
Files changed (1) hide show
  1. app.py +39 -86
app.py CHANGED
@@ -19,100 +19,85 @@ agent = ModularGAIAAgent()
19
  # --- Constants ---
20
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
21
 
22
- # --- Basic Agent Definition ---
23
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
24
  class BasicAgent:
25
  def __init__(self):
26
  print("BasicAgent (GAIA Modular Agent) initialized.")
27
  self.agent = ModularGAIAAgent()
28
- def __call__(self, question: str) -> str:
29
  print(f"Agent received question (first 50 chars): {question[:50]}...")
30
  try:
31
- answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name": ""})
32
  print(f"Agent returning answer: {answer}")
33
  return answer
34
  except Exception as e:
35
  print(f"Agent error: {e}")
36
  return f"AGENT ERROR: {e}"
37
 
38
- def run_and_submit_all( profile: gr.OAuthProfile | None):
39
  """
40
  Fetches all questions, runs the BasicAgent on them, submits all answers,
41
  and displays the results.
42
  """
43
- # --- Determine HF Space Runtime URL and Repo URL ---
44
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
45
-
46
  if profile:
47
- username= f"{profile.username}"
48
  print(f"User logged in: {username}")
49
  else:
50
  print("User not logged in.")
51
  return "Please Login to Hugging Face with the button.", None
52
-
53
  api_url = DEFAULT_API_URL
54
  questions_url = f"{api_url}/questions"
55
  submit_url = f"{api_url}/submit"
56
-
57
- # 1. Instantiate Agent ( modify this part to create your agent)
58
  try:
59
  agent = BasicAgent()
60
  except Exception as e:
61
  print(f"Error instantiating agent: {e}")
62
  return f"Error initializing agent: {e}", None
63
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
64
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
65
  print(agent_code)
66
-
67
- # 2. Fetch Questions
68
  print(f"Fetching questions from: {questions_url}")
69
  try:
70
  response = requests.get(questions_url, timeout=15)
71
  response.raise_for_status()
72
  questions_data = response.json()
73
  if not questions_data:
74
- print("Fetched questions list is empty.")
75
- return "Fetched questions list is empty or invalid format.", None
76
  print(f"Fetched {len(questions_data)} questions.")
77
  except requests.exceptions.RequestException as e:
78
  print(f"Error fetching questions: {e}")
79
  return f"Error fetching questions: {e}", None
80
  except requests.exceptions.JSONDecodeError as e:
81
- print(f"Error decoding JSON response from questions endpoint: {e}")
82
- print(f"Response text: {response.text[:500]}")
83
- return f"Error decoding server response for questions: {e}", None
84
  except Exception as e:
85
  print(f"An unexpected error occurred fetching questions: {e}")
86
  return f"An unexpected error occurred fetching questions: {e}", None
87
-
88
- # 3. Run your Agent
89
  results_log = []
90
  answers_payload = []
91
  print(f"Running agent on {len(questions_data)} questions...")
92
  for item in questions_data:
93
  task_id = item.get("task_id")
94
  question_text = item.get("question")
 
95
  if not task_id or question_text is None:
96
  print(f"Skipping item with missing task_id or question: {item}")
97
  continue
98
  try:
99
- submitted_answer = agent(question_text)
100
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
101
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
102
  except Exception as e:
103
- print(f"Error running agent on task {task_id}: {e}")
104
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
105
-
106
  if not answers_payload:
107
  print("Agent did not produce any answers to submit.")
108
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
109
-
110
- # 4. Prepare Submission
111
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
112
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
113
  print(status_update)
114
-
115
- # 5. Submit
116
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
117
  try:
118
  response = requests.post(submit_url, json=submission_data, timeout=60)
@@ -123,8 +108,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
123
  f"User: {result_data.get('username')}\n"
124
  f"Overall Score: {result_data.get('score', 'N/A')}% "
125
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
126
- f"Message: {result_data.get('message', 'No message received.')}"
127
- )
128
  print("Submission successful.")
129
  results_df = pd.DataFrame(results_log)
130
  return final_status, results_df
@@ -155,75 +139,44 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
155
  results_df = pd.DataFrame(results_log)
156
  return status_message, results_df
157
 
158
- def show_help():
159
- return (
160
- "# Agent Capabilities\n"
161
- "- Multi-modal QA (text, audio, image, code, table, YouTube/video)\n"
162
- "- File download and analysis from API\n"
163
- "- Advanced video QA: object detection, captioning, ASR\n"
164
- "- Secure code execution\n"
165
- "- Robust error handling and logging\n"
166
- "- GAIA-compliant output\n"
167
- "\nSee README.md for full details."
 
 
 
 
 
 
 
 
 
 
 
168
  )
169
-
170
- def submit_answers(username, agent_code_url):
171
- # Placeholder for submission logic
172
- return f"Submission for {username} with code {agent_code_url} (not implemented in demo)"
173
-
174
- def show_leaderboard():
175
- # Placeholder for leaderboard logic
176
- return "Leaderboard feature coming soon."
177
-
178
- demo = gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft())
179
- with demo:
180
- gr.Markdown("""
181
- # 🤖 GAIA Benchmark Agent
182
- Multi-modal, multi-step reasoning agent for the Hugging Face GAIA benchmark.
183
- """)
184
- with gr.Tabs():
185
- with gr.TabItem("API Q&A"):
186
- api_btn = gr.Button("Run on API Questions", variant="primary")
187
- api_output = gr.Textbox(label="Answers and Reasoning Trace", lines=20)
188
- api_btn.click(run_api_questions, outputs=api_output)
189
- with gr.TabItem("Manual Input"):
190
- manual_q = gr.Textbox(label="Enter your question", lines=3)
191
- manual_btn = gr.Button("Answer", variant="primary")
192
- manual_a = gr.Textbox(label="Answer")
193
- manual_trace = gr.Textbox(label="Reasoning Trace", lines=5)
194
- manual_btn.click(run_manual_question, inputs=manual_q, outputs=[manual_a, manual_trace])
195
- with gr.TabItem("Submission/Leaderboard"):
196
- username = gr.Textbox(label="Hugging Face Username")
197
- code_url = gr.Textbox(label="Agent Code URL")
198
- submit_btn = gr.Button("Submit Answers", variant="primary")
199
- submit_out = gr.Textbox(label="Submission Result")
200
- submit_btn.click(submit_answers, inputs=[username, code_url], outputs=submit_out)
201
- leaderboard_btn = gr.Button("Show Leaderboard")
202
- leaderboard_out = gr.Textbox(label="Leaderboard")
203
- leaderboard_btn.click(show_leaderboard, outputs=leaderboard_out)
204
- with gr.TabItem("Agent Help"):
205
- help_md = gr.Markdown(show_help())
206
 
207
  if __name__ == "__main__":
208
  print("\n" + "-"*30 + " App Starting " + "-"*30)
209
- # Check for SPACE_HOST and SPACE_ID at startup for information
210
  space_host_startup = os.getenv("SPACE_HOST")
211
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
212
-
213
  if space_host_startup:
214
  print(f"✅ SPACE_HOST found: {space_host_startup}")
215
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
216
  else:
217
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
218
-
219
- if space_id_startup: # Print repo URLs if SPACE_ID is found
220
  print(f"✅ SPACE_ID found: {space_id_startup}")
221
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
222
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
223
  else:
224
  print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
225
-
226
  print("-"*(60 + len(" App Starting ")) + "\n")
227
-
228
  print("Launching Gradio Interface for Basic Agent Evaluation...")
229
  demo.launch(debug=True, share=False)
 
19
  # --- Constants ---
20
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
21
 
22
+ # --- Advanced Modular Agent Integration ---
 
23
  class BasicAgent:
24
  def __init__(self):
25
  print("BasicAgent (GAIA Modular Agent) initialized.")
26
  self.agent = ModularGAIAAgent()
27
+ def __call__(self, question: str, file_name: str = "") -> str:
28
  print(f"Agent received question (first 50 chars): {question[:50]}...")
29
  try:
30
+ answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name": file_name})
31
  print(f"Agent returning answer: {answer}")
32
  return answer
33
  except Exception as e:
34
  print(f"Agent error: {e}")
35
  return f"AGENT ERROR: {e}"
36
 
37
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
38
  """
39
  Fetches all questions, runs the BasicAgent on them, submits all answers,
40
  and displays the results.
41
  """
42
+ space_id = os.getenv("SPACE_ID")
 
 
43
  if profile:
44
+ username = f"{profile.username}"
45
  print(f"User logged in: {username}")
46
  else:
47
  print("User not logged in.")
48
  return "Please Login to Hugging Face with the button.", None
 
49
  api_url = DEFAULT_API_URL
50
  questions_url = f"{api_url}/questions"
51
  submit_url = f"{api_url}/submit"
 
 
52
  try:
53
  agent = BasicAgent()
54
  except Exception as e:
55
  print(f"Error instantiating agent: {e}")
56
  return f"Error initializing agent: {e}", None
 
57
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
58
  print(agent_code)
 
 
59
  print(f"Fetching questions from: {questions_url}")
60
  try:
61
  response = requests.get(questions_url, timeout=15)
62
  response.raise_for_status()
63
  questions_data = response.json()
64
  if not questions_data:
65
+ print("Fetched questions list is empty.")
66
+ return "Fetched questions list is empty or invalid format.", None
67
  print(f"Fetched {len(questions_data)} questions.")
68
  except requests.exceptions.RequestException as e:
69
  print(f"Error fetching questions: {e}")
70
  return f"Error fetching questions: {e}", None
71
  except requests.exceptions.JSONDecodeError as e:
72
+ print(f"Error decoding JSON response from questions endpoint: {e}")
73
+ print(f"Response text: {response.text[:500]}")
74
+ return f"Error decoding server response for questions: {e}", None
75
  except Exception as e:
76
  print(f"An unexpected error occurred fetching questions: {e}")
77
  return f"An unexpected error occurred fetching questions: {e}", None
 
 
78
  results_log = []
79
  answers_payload = []
80
  print(f"Running agent on {len(questions_data)} questions...")
81
  for item in questions_data:
82
  task_id = item.get("task_id")
83
  question_text = item.get("question")
84
+ file_name = item.get("file_name", "")
85
  if not task_id or question_text is None:
86
  print(f"Skipping item with missing task_id or question: {item}")
87
  continue
88
  try:
89
+ submitted_answer = agent(question_text, file_name)
90
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
91
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
92
  except Exception as e:
93
+ print(f"Error running agent on task {task_id}: {e}")
94
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
95
  if not answers_payload:
96
  print("Agent did not produce any answers to submit.")
97
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
 
 
98
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
99
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
100
  print(status_update)
 
 
101
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
102
  try:
103
  response = requests.post(submit_url, json=submission_data, timeout=60)
 
108
  f"User: {result_data.get('username')}\n"
109
  f"Overall Score: {result_data.get('score', 'N/A')}% "
110
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
111
+ f"Message: {result_data.get('message', 'No message received.')}")
 
112
  print("Submission successful.")
113
  results_df = pd.DataFrame(results_log)
114
  return final_status, results_df
 
139
  results_df = pd.DataFrame(results_log)
140
  return status_message, results_df
141
 
142
+ with gr.Blocks() as demo:
143
+ gr.Markdown("# Basic Agent Evaluation Runner")
144
+ gr.Markdown(
145
+ """
146
+ **Instructions:**
147
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
148
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
149
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
150
+ ---
151
+ **Disclaimers:**
152
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
153
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
154
+ """
155
+ )
156
+ gr.LoginButton()
157
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
158
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
159
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
160
+ run_button.click(
161
+ fn=run_and_submit_all,
162
+ outputs=[status_output, results_table]
163
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
  if __name__ == "__main__":
166
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
167
  space_host_startup = os.getenv("SPACE_HOST")
168
+ space_id_startup = os.getenv("SPACE_ID")
 
169
  if space_host_startup:
170
  print(f"✅ SPACE_HOST found: {space_host_startup}")
171
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
172
  else:
173
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
174
+ if space_id_startup:
 
175
  print(f"✅ SPACE_ID found: {space_id_startup}")
176
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
177
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
178
  else:
179
  print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
180
  print("-"*(60 + len(" App Starting ")) + "\n")
 
181
  print("Launching Gradio Interface for Basic Agent Evaluation...")
182
  demo.launch(debug=True, share=False)