Spaces:
Runtime error
Runtime error
Omachoko
commited on
Commit
·
2d95e30
1
Parent(s):
30baeaa
Integrate ModularGAIAAgent into evaluation runner architecture
Browse files
app.py
CHANGED
@@ -19,100 +19,85 @@ agent = ModularGAIAAgent()
|
|
19 |
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
|
22 |
-
# ---
|
23 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
24 |
class BasicAgent:
|
25 |
def __init__(self):
|
26 |
print("BasicAgent (GAIA Modular Agent) initialized.")
|
27 |
self.agent = ModularGAIAAgent()
|
28 |
-
def __call__(self, question: str) -> str:
|
29 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
30 |
try:
|
31 |
-
answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name":
|
32 |
print(f"Agent returning answer: {answer}")
|
33 |
return answer
|
34 |
except Exception as e:
|
35 |
print(f"Agent error: {e}")
|
36 |
return f"AGENT ERROR: {e}"
|
37 |
|
38 |
-
def run_and_submit_all(
|
39 |
"""
|
40 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
41 |
and displays the results.
|
42 |
"""
|
43 |
-
|
44 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
45 |
-
|
46 |
if profile:
|
47 |
-
username= f"{profile.username}"
|
48 |
print(f"User logged in: {username}")
|
49 |
else:
|
50 |
print("User not logged in.")
|
51 |
return "Please Login to Hugging Face with the button.", None
|
52 |
-
|
53 |
api_url = DEFAULT_API_URL
|
54 |
questions_url = f"{api_url}/questions"
|
55 |
submit_url = f"{api_url}/submit"
|
56 |
-
|
57 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
58 |
try:
|
59 |
agent = BasicAgent()
|
60 |
except Exception as e:
|
61 |
print(f"Error instantiating agent: {e}")
|
62 |
return f"Error initializing agent: {e}", None
|
63 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
64 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
65 |
print(agent_code)
|
66 |
-
|
67 |
-
# 2. Fetch Questions
|
68 |
print(f"Fetching questions from: {questions_url}")
|
69 |
try:
|
70 |
response = requests.get(questions_url, timeout=15)
|
71 |
response.raise_for_status()
|
72 |
questions_data = response.json()
|
73 |
if not questions_data:
|
74 |
-
|
75 |
-
|
76 |
print(f"Fetched {len(questions_data)} questions.")
|
77 |
except requests.exceptions.RequestException as e:
|
78 |
print(f"Error fetching questions: {e}")
|
79 |
return f"Error fetching questions: {e}", None
|
80 |
except requests.exceptions.JSONDecodeError as e:
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
except Exception as e:
|
85 |
print(f"An unexpected error occurred fetching questions: {e}")
|
86 |
return f"An unexpected error occurred fetching questions: {e}", None
|
87 |
-
|
88 |
-
# 3. Run your Agent
|
89 |
results_log = []
|
90 |
answers_payload = []
|
91 |
print(f"Running agent on {len(questions_data)} questions...")
|
92 |
for item in questions_data:
|
93 |
task_id = item.get("task_id")
|
94 |
question_text = item.get("question")
|
|
|
95 |
if not task_id or question_text is None:
|
96 |
print(f"Skipping item with missing task_id or question: {item}")
|
97 |
continue
|
98 |
try:
|
99 |
-
submitted_answer = agent(question_text)
|
100 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
101 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
102 |
except Exception as e:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
if not answers_payload:
|
107 |
print("Agent did not produce any answers to submit.")
|
108 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
109 |
-
|
110 |
-
# 4. Prepare Submission
|
111 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
112 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
113 |
print(status_update)
|
114 |
-
|
115 |
-
# 5. Submit
|
116 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
117 |
try:
|
118 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
@@ -123,8 +108,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
123 |
f"User: {result_data.get('username')}\n"
|
124 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
125 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
126 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
127 |
-
)
|
128 |
print("Submission successful.")
|
129 |
results_df = pd.DataFrame(results_log)
|
130 |
return final_status, results_df
|
@@ -155,75 +139,44 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
155 |
results_df = pd.DataFrame(results_log)
|
156 |
return status_message, results_df
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
"
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
)
|
169 |
-
|
170 |
-
def submit_answers(username, agent_code_url):
|
171 |
-
# Placeholder for submission logic
|
172 |
-
return f"Submission for {username} with code {agent_code_url} (not implemented in demo)"
|
173 |
-
|
174 |
-
def show_leaderboard():
|
175 |
-
# Placeholder for leaderboard logic
|
176 |
-
return "Leaderboard feature coming soon."
|
177 |
-
|
178 |
-
demo = gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft())
|
179 |
-
with demo:
|
180 |
-
gr.Markdown("""
|
181 |
-
# 🤖 GAIA Benchmark Agent
|
182 |
-
Multi-modal, multi-step reasoning agent for the Hugging Face GAIA benchmark.
|
183 |
-
""")
|
184 |
-
with gr.Tabs():
|
185 |
-
with gr.TabItem("API Q&A"):
|
186 |
-
api_btn = gr.Button("Run on API Questions", variant="primary")
|
187 |
-
api_output = gr.Textbox(label="Answers and Reasoning Trace", lines=20)
|
188 |
-
api_btn.click(run_api_questions, outputs=api_output)
|
189 |
-
with gr.TabItem("Manual Input"):
|
190 |
-
manual_q = gr.Textbox(label="Enter your question", lines=3)
|
191 |
-
manual_btn = gr.Button("Answer", variant="primary")
|
192 |
-
manual_a = gr.Textbox(label="Answer")
|
193 |
-
manual_trace = gr.Textbox(label="Reasoning Trace", lines=5)
|
194 |
-
manual_btn.click(run_manual_question, inputs=manual_q, outputs=[manual_a, manual_trace])
|
195 |
-
with gr.TabItem("Submission/Leaderboard"):
|
196 |
-
username = gr.Textbox(label="Hugging Face Username")
|
197 |
-
code_url = gr.Textbox(label="Agent Code URL")
|
198 |
-
submit_btn = gr.Button("Submit Answers", variant="primary")
|
199 |
-
submit_out = gr.Textbox(label="Submission Result")
|
200 |
-
submit_btn.click(submit_answers, inputs=[username, code_url], outputs=submit_out)
|
201 |
-
leaderboard_btn = gr.Button("Show Leaderboard")
|
202 |
-
leaderboard_out = gr.Textbox(label="Leaderboard")
|
203 |
-
leaderboard_btn.click(show_leaderboard, outputs=leaderboard_out)
|
204 |
-
with gr.TabItem("Agent Help"):
|
205 |
-
help_md = gr.Markdown(show_help())
|
206 |
|
207 |
if __name__ == "__main__":
|
208 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
209 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
210 |
space_host_startup = os.getenv("SPACE_HOST")
|
211 |
-
space_id_startup = os.getenv("SPACE_ID")
|
212 |
-
|
213 |
if space_host_startup:
|
214 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
215 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
216 |
else:
|
217 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
218 |
-
|
219 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
220 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
221 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
222 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
223 |
else:
|
224 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
225 |
-
|
226 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
227 |
-
|
228 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
229 |
demo.launch(debug=True, share=False)
|
|
|
19 |
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
|
22 |
+
# --- Advanced Modular Agent Integration ---
|
|
|
23 |
class BasicAgent:
|
24 |
def __init__(self):
|
25 |
print("BasicAgent (GAIA Modular Agent) initialized.")
|
26 |
self.agent = ModularGAIAAgent()
|
27 |
+
def __call__(self, question: str, file_name: str = "") -> str:
|
28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
try:
|
30 |
+
answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name": file_name})
|
31 |
print(f"Agent returning answer: {answer}")
|
32 |
return answer
|
33 |
except Exception as e:
|
34 |
print(f"Agent error: {e}")
|
35 |
return f"AGENT ERROR: {e}"
|
36 |
|
37 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
38 |
"""
|
39 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
40 |
and displays the results.
|
41 |
"""
|
42 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
43 |
if profile:
|
44 |
+
username = f"{profile.username}"
|
45 |
print(f"User logged in: {username}")
|
46 |
else:
|
47 |
print("User not logged in.")
|
48 |
return "Please Login to Hugging Face with the button.", None
|
|
|
49 |
api_url = DEFAULT_API_URL
|
50 |
questions_url = f"{api_url}/questions"
|
51 |
submit_url = f"{api_url}/submit"
|
|
|
|
|
52 |
try:
|
53 |
agent = BasicAgent()
|
54 |
except Exception as e:
|
55 |
print(f"Error instantiating agent: {e}")
|
56 |
return f"Error initializing agent: {e}", None
|
|
|
57 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
58 |
print(agent_code)
|
|
|
|
|
59 |
print(f"Fetching questions from: {questions_url}")
|
60 |
try:
|
61 |
response = requests.get(questions_url, timeout=15)
|
62 |
response.raise_for_status()
|
63 |
questions_data = response.json()
|
64 |
if not questions_data:
|
65 |
+
print("Fetched questions list is empty.")
|
66 |
+
return "Fetched questions list is empty or invalid format.", None
|
67 |
print(f"Fetched {len(questions_data)} questions.")
|
68 |
except requests.exceptions.RequestException as e:
|
69 |
print(f"Error fetching questions: {e}")
|
70 |
return f"Error fetching questions: {e}", None
|
71 |
except requests.exceptions.JSONDecodeError as e:
|
72 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
73 |
+
print(f"Response text: {response.text[:500]}")
|
74 |
+
return f"Error decoding server response for questions: {e}", None
|
75 |
except Exception as e:
|
76 |
print(f"An unexpected error occurred fetching questions: {e}")
|
77 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
|
78 |
results_log = []
|
79 |
answers_payload = []
|
80 |
print(f"Running agent on {len(questions_data)} questions...")
|
81 |
for item in questions_data:
|
82 |
task_id = item.get("task_id")
|
83 |
question_text = item.get("question")
|
84 |
+
file_name = item.get("file_name", "")
|
85 |
if not task_id or question_text is None:
|
86 |
print(f"Skipping item with missing task_id or question: {item}")
|
87 |
continue
|
88 |
try:
|
89 |
+
submitted_answer = agent(question_text, file_name)
|
90 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
91 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
92 |
except Exception as e:
|
93 |
+
print(f"Error running agent on task {task_id}: {e}")
|
94 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
95 |
if not answers_payload:
|
96 |
print("Agent did not produce any answers to submit.")
|
97 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
|
|
|
|
98 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
99 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
100 |
print(status_update)
|
|
|
|
|
101 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
102 |
try:
|
103 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
108 |
f"User: {result_data.get('username')}\n"
|
109 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
110 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
111 |
+
f"Message: {result_data.get('message', 'No message received.')}")
|
|
|
112 |
print("Submission successful.")
|
113 |
results_df = pd.DataFrame(results_log)
|
114 |
return final_status, results_df
|
|
|
139 |
results_df = pd.DataFrame(results_log)
|
140 |
return status_message, results_df
|
141 |
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
144 |
+
gr.Markdown(
|
145 |
+
"""
|
146 |
+
**Instructions:**
|
147 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
148 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
149 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
150 |
+
---
|
151 |
+
**Disclaimers:**
|
152 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
153 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
154 |
+
"""
|
155 |
+
)
|
156 |
+
gr.LoginButton()
|
157 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
158 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
159 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
160 |
+
run_button.click(
|
161 |
+
fn=run_and_submit_all,
|
162 |
+
outputs=[status_output, results_table]
|
163 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
167 |
space_host_startup = os.getenv("SPACE_HOST")
|
168 |
+
space_id_startup = os.getenv("SPACE_ID")
|
|
|
169 |
if space_host_startup:
|
170 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
171 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
172 |
else:
|
173 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
174 |
+
if space_id_startup:
|
|
|
175 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
176 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
177 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
178 |
else:
|
179 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
180 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
|
|
181 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
182 |
demo.launch(debug=True, share=False)
|