Spaces:
Runtime error
Runtime error
Omachoko
commited on
Commit
·
a9d900f
1
Parent(s):
f58a18b
Finalize: move advanced agent to root, clean up, ready for deployment
Browse files- .gitignore +0 -91
- README.md +26 -258
- app.py +371 -15
- gaia_agent.py +0 -397
- requirements.txt +10 -16
- tests/test_agent_core.py +0 -38
- tests/test_video_qa.py +0 -22
.gitignore
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
# Python
|
2 |
-
__pycache__/
|
3 |
-
*.py[cod]
|
4 |
-
*$py.class
|
5 |
-
*.so
|
6 |
-
.Python
|
7 |
-
build/
|
8 |
-
develop-eggs/
|
9 |
-
dist/
|
10 |
-
downloads/
|
11 |
-
eggs/
|
12 |
-
.eggs/
|
13 |
-
lib/
|
14 |
-
lib64/
|
15 |
-
parts/
|
16 |
-
sdist/
|
17 |
-
var/
|
18 |
-
wheels/
|
19 |
-
pip-wheel-metadata/
|
20 |
-
share/python-wheels/
|
21 |
-
*.egg-info/
|
22 |
-
.installed.cfg
|
23 |
-
*.egg
|
24 |
-
MANIFEST
|
25 |
-
|
26 |
-
# Virtual Environments
|
27 |
-
.env
|
28 |
-
.venv
|
29 |
-
env/
|
30 |
-
venv/
|
31 |
-
ENV/
|
32 |
-
env.bak/
|
33 |
-
venv.bak/
|
34 |
-
gaia_env/
|
35 |
-
|
36 |
-
# IDE
|
37 |
-
.vscode/
|
38 |
-
.idea/
|
39 |
-
*.swp
|
40 |
-
*.swo
|
41 |
-
*~
|
42 |
-
|
43 |
-
# OS
|
44 |
-
.DS_Store
|
45 |
-
.DS_Store?
|
46 |
-
._*
|
47 |
-
.Spotlight-V100
|
48 |
-
.Trashes
|
49 |
-
ehthumbs.db
|
50 |
-
Thumbs.db
|
51 |
-
|
52 |
-
# Logs
|
53 |
-
*.log
|
54 |
-
logs/
|
55 |
-
|
56 |
-
# Environment variables
|
57 |
-
.env
|
58 |
-
.env.local
|
59 |
-
.env.development.local
|
60 |
-
.env.test.local
|
61 |
-
.env.production.local
|
62 |
-
|
63 |
-
# Jupyter Notebook
|
64 |
-
.ipynb_checkpoints
|
65 |
-
|
66 |
-
# pytest
|
67 |
-
.pytest_cache/
|
68 |
-
.tox/
|
69 |
-
.coverage
|
70 |
-
htmlcov/
|
71 |
-
|
72 |
-
# mypy
|
73 |
-
.mypy_cache/
|
74 |
-
.dmypy.json
|
75 |
-
dmypy.json
|
76 |
-
|
77 |
-
# Hugging Face
|
78 |
-
wandb/ __pycache__/
|
79 |
-
__pycache__/
|
80 |
-
|
81 |
-
# New additions
|
82 |
-
gaia_env/
|
83 |
-
gaia_agent.log
|
84 |
-
*.pyc
|
85 |
-
*.pyo
|
86 |
-
*.pyd
|
87 |
-
*.swp
|
88 |
-
.DS_Store
|
89 |
-
.env
|
90 |
-
venv/
|
91 |
-
gaia_agent_files/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,272 +1,40 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
#
|
14 |
|
15 |
-
|
16 |
|
17 |
-
##
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
- ✅ Fetch questions from official GAIA API (`GET /questions`)
|
25 |
-
- ✅ Get random questions (`GET /random-question`)
|
26 |
-
- ✅ Download task files (`GET /files/{task_id}`)
|
27 |
-
- ✅ Submit answers for official scoring (`POST /submit`)
|
28 |
-
- ✅ Real-time leaderboard submission
|
29 |
-
|
30 |
-
### 🧠 **Enhanced Multi-Step Reasoning**
|
31 |
-
- **Advanced Workflow**: Analyze → Plan → Act → Observe → Reason → Answer
|
32 |
-
- **Reasoning Memory**: Maintains context across 15+ reasoning steps
|
33 |
-
- **Question Classification**: Automatic complexity assessment (Level 1-3)
|
34 |
-
- **Tool Orchestration**: Intelligent tool selection and execution
|
35 |
-
|
36 |
-
### 🛠️ **Enhanced Tool Arsenal** (9 Tools)
|
37 |
-
1. **🧮 Enhanced Calculator** - Complex mathematical operations
|
38 |
-
2. **🌐 Enhanced Web Search** - Expanded knowledge base (20+ countries)
|
39 |
-
3. **🖼️ Image Analyzer** - Visual content processing and spatial reasoning
|
40 |
-
4. **📄 Document Reader** - File content extraction
|
41 |
-
5. **📁 File Processor** - Download and process GAIA task files
|
42 |
-
6. **📅 Date Calculator** - Temporal reasoning and age calculations
|
43 |
-
7. **🔄 Unit Converter** - Length, temperature, weight conversions
|
44 |
-
8. **📝 Text Analyzer** - Content analysis and pattern extraction
|
45 |
-
9. **🧠 Reasoning Chain** - Multi-step logical synthesis
|
46 |
-
|
47 |
-
### 📊 **Enhanced Knowledge Base**
|
48 |
-
- **Geography**: 20+ countries and capitals
|
49 |
-
- **Astronomy**: Solar system facts, planet classifications (8 planets, 4 gas giants)
|
50 |
-
- **History**: Key events (Berlin Wall fall 1989, Cold War end, etc.)
|
51 |
-
- **Mathematics**: Constants (π, e, golden ratio) and conversion factors
|
52 |
-
- **Arts**: Famous paintings and artists
|
53 |
-
|
54 |
-
## 🎯 GAIA Compliance Features
|
55 |
-
|
56 |
-
### ✅ **Level 1**: Basic Questions (<5 steps)
|
57 |
-
- Simple mathematical calculations
|
58 |
-
- Geographic knowledge queries
|
59 |
-
- Basic factual lookups
|
60 |
-
|
61 |
-
### ✅ **Level 2**: Multi-Step Reasoning (5-10 steps)
|
62 |
-
- Complex calculations with multiple components
|
63 |
-
- Cross-domain knowledge synthesis
|
64 |
-
- Tool coordination and chaining
|
65 |
-
|
66 |
-
### ✅ **Level 3**: Long-Term Planning
|
67 |
-
- Advanced reasoning with 15+ steps
|
68 |
-
- File processing and analysis
|
69 |
-
- Multi-modal understanding simulation
|
70 |
-
|
71 |
-
## 🚀 Performance Targets
|
72 |
-
|
73 |
-
| Metric | Target | Baseline | Status |
|
74 |
-
|--------|--------|----------|---------|
|
75 |
-
| **Minimum Required** | 30% | GPT-4 ~15% | 🎯 Optimized |
|
76 |
-
| **Enhanced Target** | 35-45% | Human ~92% | 📈 Achievable |
|
77 |
-
| **Certification** | 30%+ | Course Requirement | ✅ Ready |
|
78 |
-
|
79 |
-
## 🛠️ Technical Implementation
|
80 |
-
|
81 |
-
### Core Components
|
82 |
-
- `gaia_agent.py`: Enhanced agent with full capabilities (800+ lines)
|
83 |
-
- `app.py`: Complete Gradio interface with API integration
|
84 |
-
- `requirements.txt`: Enhanced dependencies for full functionality
|
85 |
-
|
86 |
-
### Enhanced Dependencies
|
87 |
-
```
|
88 |
-
gradio==4.44.0 # Latest UI framework
|
89 |
-
requests==2.31.0 # API connectivity
|
90 |
-
pandas==2.1.0 # Data processing
|
91 |
-
beautifulsoup4==4.12.2 # Content parsing
|
92 |
-
pillow==10.0.1 # Image processing
|
93 |
-
markdownify==0.11.6 # Document formatting
|
94 |
-
```
|
95 |
-
|
96 |
-
### API Integration
|
97 |
-
```python
|
98 |
-
# Fetch questions
|
99 |
-
questions = agent.get_questions()
|
100 |
-
|
101 |
-
# Process with file support
|
102 |
-
answer = agent.query(question, task_id="task_123")
|
103 |
-
|
104 |
-
# Submit for scoring
|
105 |
-
result = agent.submit_answer(username, agent_code_url, answers)
|
106 |
-
```
|
107 |
-
|
108 |
-
## 📱 User Interface
|
109 |
-
|
110 |
-
### 🎯 **GAIA Questions Tab**
|
111 |
-
- Fetch real questions from GAIA API
|
112 |
-
- Automatic file download and processing
|
113 |
-
- Enhanced reasoning with memory display
|
114 |
-
|
115 |
-
### ✏️ **Manual Input Tab**
|
116 |
-
- Test custom questions
|
117 |
-
- Example questions for different complexity levels
|
118 |
-
- Immediate processing and feedback
|
119 |
-
|
120 |
-
### 📊 **Submission & Scoring Tab**
|
121 |
-
- Official GAIA leaderboard submission
|
122 |
-
- Progress tracking and statistics
|
123 |
-
- Performance monitoring
|
124 |
-
|
125 |
-
### 🛠️ **Agent Details Tab**
|
126 |
-
- Complete capability documentation
|
127 |
-
- Tool descriptions and examples
|
128 |
-
- Performance benchmarks
|
129 |
-
|
130 |
-
## 🧪 Example Capabilities
|
131 |
-
|
132 |
-
### Mathematical Reasoning
|
133 |
-
```
|
134 |
-
Q: If there are 8 planets and 4 are gas giants, how many are not gas giants?
|
135 |
-
A: 4
|
136 |
-
```
|
137 |
-
|
138 |
-
### Geographic Knowledge
|
139 |
-
```
|
140 |
-
Q: What is the capital of Germany?
|
141 |
-
A: Berlin
|
142 |
-
```
|
143 |
-
|
144 |
-
### Historical Research
|
145 |
-
```
|
146 |
-
Q: Who was the US president when the Berlin Wall fell?
|
147 |
-
A: George H.W. Bush
|
148 |
-
```
|
149 |
-
|
150 |
-
### Complex Calculations
|
151 |
-
```
|
152 |
-
Q: Convert 100 degrees Celsius to Fahrenheit
|
153 |
-
A: 212.0
|
154 |
-
```
|
155 |
-
|
156 |
-
## 🎯 Usage Instructions
|
157 |
-
|
158 |
-
### 1. **Setup Environment**
|
159 |
-
```bash
|
160 |
-
pip install -r requirements.txt
|
161 |
-
python app.py
|
162 |
-
```
|
163 |
-
|
164 |
-
### 2. **Fetch GAIA Questions**
|
165 |
-
- Click "Get Random Question" to fetch from API
|
166 |
-
- Questions include task ID and associated files
|
167 |
-
- Files are automatically downloaded and processed
|
168 |
-
|
169 |
-
### 3. **Process Questions**
|
170 |
-
- Enhanced agent uses 15-step reasoning
|
171 |
-
- Multiple tools are orchestrated intelligently
|
172 |
-
- Reasoning memory is displayed for transparency
|
173 |
-
|
174 |
-
### 4. **Submit for Scoring**
|
175 |
-
- Provide Hugging Face username
|
176 |
-
- Include agent code URL (your Space link)
|
177 |
-
- Submit accumulated answers for official scoring
|
178 |
-
|
179 |
-
## 🏆 Certification Ready
|
180 |
-
|
181 |
-
This implementation is specifically optimized to achieve the **30% target performance** required for course certification:
|
182 |
-
|
183 |
-
- ✅ **Complete API Integration** - Connects to official GAIA endpoints
|
184 |
-
- ✅ **Enhanced Reasoning** - 15-step multi-tool workflow
|
185 |
-
- ✅ **Expanded Knowledge** - Comprehensive knowledge base
|
186 |
-
- ✅ **File Processing** - Handles task-associated files
|
187 |
-
- ✅ **Clean Formatting** - Exact match answer preparation
|
188 |
-
- ✅ **Progress Tracking** - Real-time performance monitoring
|
189 |
-
|
190 |
-
## 📊 Optimization Results
|
191 |
-
|
192 |
-
| Component | Before | After | Improvement |
|
193 |
-
|-----------|--------|-------|-------------|
|
194 |
-
| **Tools** | 5 basic | 9 enhanced | +80% capability |
|
195 |
-
| **Knowledge Base** | 8 entries | 50+ entries | +500% coverage |
|
196 |
-
| **Reasoning Steps** | 10 max | 15 max | +50% depth |
|
197 |
-
| **API Integration** | None | Full | Complete |
|
198 |
-
| **File Support** | None | TXT/JSON/CSV | Advanced |
|
199 |
-
|
200 |
-
---
|
201 |
-
|
202 |
-
**🎯 Ready for GAIA Benchmark - Targeting 30%+ Performance for Course Certification**
|
203 |
-
|
204 |
-
# Modular GAIA Agent
|
205 |
-
|
206 |
-
A production-ready, GAIA benchmark-compliant agent for Hugging Face's AI Agents course. Handles multi-modal questions, file downloads, and tool chaining with strict GAIA output formatting.
|
207 |
-
|
208 |
-
## Features
|
209 |
-
- Modular tool/LLM registry (easy to extend)
|
210 |
-
- Best-in-class Hugging Face models for LLM, QA, table QA, ASR, image captioning
|
211 |
-
- File download/caching and type routing
|
212 |
-
- Multi-step reasoning and tool chaining
|
213 |
-
- GAIA-compliant output and reasoning trace
|
214 |
-
- **Advanced YouTube/Video QA**: Frame extraction, object detection (YOLOv8), image captioning (BLIP), and audio transcription (Whisper)
|
215 |
-
- **Robust error handling and logging**: All errors are logged to `gaia_agent.log` and user-friendly messages are returned
|
216 |
-
- **Secure code execution**: Python code is run in a subprocess with timeout and resource limits
|
217 |
-
- **Automated testing**: Unit and integration tests with pytest
|
218 |
|
219 |
## Usage
|
|
|
|
|
|
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
# Also install yt-dlp (for YouTube/video QA)
|
225 |
-
pip install yt-dlp
|
226 |
-
# Download YOLOv8 weights if needed
|
227 |
-
python -c "from ultralytics import YOLO; YOLO('yolov8n.pt')"
|
228 |
-
```
|
229 |
-
|
230 |
-
### Run the agent
|
231 |
-
```python
|
232 |
-
from gaia_agent import ModularGAIAAgent
|
233 |
-
agent = ModularGAIAAgent()
|
234 |
-
results = agent.run(from_api=True)
|
235 |
-
for r in results:
|
236 |
-
print(r)
|
237 |
-
```
|
238 |
|
239 |
-
|
240 |
-
```bash
|
241 |
-
python app.py
|
242 |
-
```
|
243 |
-
|
244 |
-
### Run tests
|
245 |
-
```bash
|
246 |
-
pytest tests/
|
247 |
-
```
|
248 |
-
|
249 |
-
### Debugging and Logging
|
250 |
-
- All errors and important events are logged to `gaia_agent.log`.
|
251 |
-
- Set the agent's debug flag for verbose output (see code).
|
252 |
-
|
253 |
-
### Security
|
254 |
-
- Python code is executed in a subprocess with a timeout (default 5s).
|
255 |
-
- For extra safety, consider running the agent in a containerized environment.
|
256 |
-
|
257 |
-
## File Structure
|
258 |
-
- `gaia_agent.py`: Main agent logic
|
259 |
-
- `requirements.txt`: Dependencies
|
260 |
-
- `README.md`: This file
|
261 |
-
- `app.py`: Gradio UI
|
262 |
-
- `tests/`: Automated tests
|
263 |
-
- `gaia_agent_files/`: Example/context files
|
264 |
-
|
265 |
-
## Example Screenshot
|
266 |
|
267 |
-
|
268 |
|
269 |
-
|
270 |
-
- Requires a Hugging Face token for some models/APIs
|
271 |
-
- Designed for easy extension and robust, production use
|
272 |
-
- For video QA, ensure `yt-dlp` and YOLOv8 weights are available
|
|
|
1 |
---
|
2 |
+
title: Template Final Assignment
|
3 |
+
emoji: 🕵🏻♂️
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.25.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
hf_oauth: true
|
11 |
+
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
+
hf_oauth_expiration_minutes: 480
|
13 |
---
|
14 |
|
15 |
+
# GAIA Benchmark Agent - Modular Multi-Modal Architecture
|
16 |
|
17 |
+
This Space is built on the official [agents-course/Final_Assignment_Template](https://huggingface.co/spaces/agents-course/Final_Assignment_Template) base. The architecture strictly preserves the original constants and UI, but replaces the agent logic with a fully modular, multi-modal, GAIA-compliant agent.
|
18 |
|
19 |
+
## Key Features
|
20 |
+
- **ModularGAIAAgent**: Handles multi-modal, multi-step reasoning, tool use, file handling, and strict GAIA output formatting.
|
21 |
+
- **Tool/LLM Registry**: Easily extensible for new tools, models, and modalities.
|
22 |
+
- **File Handling**: Supports text, CSV, Excel, JSON, images, audio, and code files, with automatic type detection and routing.
|
23 |
+
- **Adaptive Reasoning**: Plans and chains tool/model calls as needed for each question.
|
24 |
+
- **GAIA-Compliant Output**: Ensures answers are formatted to GAIA standards.
|
25 |
+
- **Trace Logging**: Internal reasoning trace for each answer (for debugging and transparency).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Usage
|
28 |
+
- Log in with your Hugging Face account.
|
29 |
+
- Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and submit answers for scoring.
|
30 |
+
- The UI and constants (such as `DEFAULT_API_URL`) are unchanged from the official template, ensuring full compatibility with the GAIA evaluation system.
|
31 |
|
32 |
+
## Customization
|
33 |
+
- To extend the agent, add new tools or models to the `TOOL_REGISTRY` and update the logic in `ModularGAIAAgent`.
|
34 |
+
- The agent is designed for easy adaptation to new modalities and reasoning strategies.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
**Note:** This implementation is intentionally modular and extensible, but the public interface and constants remain as required by the course template.
|
39 |
|
40 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
app.py
CHANGED
@@ -1,25 +1,368 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
🚀 Enhanced GAIA Agent Interface - Full API Integration
|
4 |
-
Complete Gradio interface for GAIA benchmark with API connectivity and scoring
|
5 |
-
"""
|
6 |
-
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
-
import json
|
10 |
-
from datetime import datetime
|
11 |
-
from gaia_agent import ModularGAIAAgent
|
12 |
import requests
|
13 |
import inspect
|
14 |
import pandas as pd
|
15 |
-
|
16 |
-
agent = ModularGAIAAgent()
|
17 |
|
18 |
# (Keep Constants as is)
|
19 |
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
|
22 |
-
# --- Advanced Modular Agent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
class BasicAgent:
|
24 |
def __init__(self):
|
25 |
print("BasicAgent (GAIA Modular Agent) initialized.")
|
@@ -139,24 +482,32 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
139 |
results_df = pd.DataFrame(results_log)
|
140 |
return status_message, results_df
|
141 |
|
|
|
142 |
with gr.Blocks() as demo:
|
143 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
144 |
gr.Markdown(
|
145 |
"""
|
146 |
**Instructions:**
|
|
|
147 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
148 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
149 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
150 |
---
|
151 |
**Disclaimers:**
|
152 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
153 |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
154 |
"""
|
155 |
)
|
|
|
156 |
gr.LoginButton()
|
|
|
157 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
158 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
159 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
|
|
160 |
run_button.click(
|
161 |
fn=run_and_submit_all,
|
162 |
outputs=[status_output, results_table]
|
@@ -164,19 +515,24 @@ with gr.Blocks() as demo:
|
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
167 |
space_host_startup = os.getenv("SPACE_HOST")
|
168 |
-
space_id_startup = os.getenv("SPACE_ID")
|
|
|
169 |
if space_host_startup:
|
170 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
171 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
172 |
else:
|
173 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
174 |
-
|
|
|
175 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
176 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
177 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
178 |
else:
|
179 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
180 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
|
|
181 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
182 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from typing import Any
|
|
|
7 |
|
8 |
# (Keep Constants as is)
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
+
# --- Advanced Modular Agent Implementation ---
|
13 |
+
import json
|
14 |
+
import logging
|
15 |
+
import mimetypes
|
16 |
+
import openpyxl
|
17 |
+
import numpy as np
|
18 |
+
from datetime import datetime
|
19 |
+
from io import BytesIO
|
20 |
+
from PIL import Image
|
21 |
+
import subprocess
|
22 |
+
import tempfile
|
23 |
+
from huggingface_hub import InferenceClient
|
24 |
+
import cv2
|
25 |
+
import torch
|
26 |
+
from bs4 import BeautifulSoup
|
27 |
+
|
28 |
+
logging.basicConfig(filename='gaia_agent.log', level=logging.INFO, format='%(asctime)s %(levelname)s:%(message)s')
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
31 |
+
|
32 |
+
def llama3_chat(prompt):
|
33 |
+
try:
|
34 |
+
client = InferenceClient(provider="fireworks-ai", api_key=HF_TOKEN)
|
35 |
+
completion = client.chat.completions.create(
|
36 |
+
model="meta-llama/Llama-3.1-8B-Instruct",
|
37 |
+
messages=[{"role": "user", "content": prompt}],
|
38 |
+
)
|
39 |
+
return completion.choices[0].message.content
|
40 |
+
except Exception as e:
|
41 |
+
logging.error(f"llama3_chat error: {e}")
|
42 |
+
return f"LLM error: {e}"
|
43 |
+
|
44 |
+
def mixtral_chat(prompt):
|
45 |
+
try:
|
46 |
+
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
|
47 |
+
completion = client.chat.completions.create(
|
48 |
+
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
49 |
+
messages=[{"role": "user", "content": prompt}],
|
50 |
+
)
|
51 |
+
return completion.choices[0].message.content
|
52 |
+
except Exception as e:
|
53 |
+
logging.error(f"mixtral_chat error: {e}")
|
54 |
+
return f"LLM error: {e}"
|
55 |
+
|
56 |
+
def extractive_qa(question, context):
|
57 |
+
try:
|
58 |
+
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
|
59 |
+
answer = client.question_answering(
|
60 |
+
question=question,
|
61 |
+
context=context,
|
62 |
+
model="deepset/roberta-base-squad2",
|
63 |
+
)
|
64 |
+
return answer["answer"]
|
65 |
+
except Exception as e:
|
66 |
+
logging.error(f"extractive_qa error: {e}")
|
67 |
+
return f"QA error: {e}"
|
68 |
+
|
69 |
+
def table_qa(query, table):
|
70 |
+
try:
|
71 |
+
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
|
72 |
+
answer = client.table_question_answering(
|
73 |
+
query=query,
|
74 |
+
table=table,
|
75 |
+
model="google/tapas-large-finetuned-wtq",
|
76 |
+
)
|
77 |
+
return answer["answer"]
|
78 |
+
except Exception as e:
|
79 |
+
logging.error(f"table_qa error: {e}")
|
80 |
+
return f"Table QA error: {e}"
|
81 |
+
|
82 |
+
def asr_transcribe(audio_path):
|
83 |
+
try:
|
84 |
+
import torchaudio
|
85 |
+
from transformers import pipeline
|
86 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
87 |
+
result = asr(audio_path)
|
88 |
+
return result["text"]
|
89 |
+
except Exception as e:
|
90 |
+
logging.error(f"asr_transcribe error: {e}")
|
91 |
+
return f"ASR error: {e}"
|
92 |
+
|
93 |
+
def image_caption(image_path):
|
94 |
+
try:
|
95 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
96 |
+
from PIL import Image
|
97 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
98 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
99 |
+
raw_image = Image.open(image_path).convert('RGB')
|
100 |
+
inputs = processor(raw_image, return_tensors="pt")
|
101 |
+
out = model.generate(**inputs)
|
102 |
+
return processor.decode(out[0], skip_special_tokens=True)
|
103 |
+
except Exception as e:
|
104 |
+
logging.error(f"image_caption error: {e}")
|
105 |
+
return f"Image captioning error: {e}"
|
106 |
+
|
107 |
+
def code_analysis(py_path):
|
108 |
+
try:
|
109 |
+
with open(py_path) as f:
|
110 |
+
code = f.read()
|
111 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as tmp:
|
112 |
+
tmp.write(code)
|
113 |
+
tmp_path = tmp.name
|
114 |
+
try:
|
115 |
+
result = subprocess.run([
|
116 |
+
"python3", tmp_path
|
117 |
+
], capture_output=True, text=True, timeout=5)
|
118 |
+
if result.returncode == 0:
|
119 |
+
output = result.stdout.strip().split('\n')
|
120 |
+
return output[-1] if output else ''
|
121 |
+
else:
|
122 |
+
logging.error(f"code_analysis subprocess error: {result.stderr}")
|
123 |
+
return f"Code error: {result.stderr}"
|
124 |
+
except subprocess.TimeoutExpired:
|
125 |
+
logging.error("code_analysis timeout")
|
126 |
+
return "Code execution timed out"
|
127 |
+
finally:
|
128 |
+
os.remove(tmp_path)
|
129 |
+
except Exception as e:
|
130 |
+
logging.error(f"code_analysis error: {e}")
|
131 |
+
return f"Code analysis error: {e}"
|
132 |
+
|
133 |
+
def youtube_video_qa(youtube_url, question):
|
134 |
+
import subprocess
|
135 |
+
import tempfile
|
136 |
+
import os
|
137 |
+
from transformers import pipeline
|
138 |
+
try:
|
139 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
140 |
+
# Download video
|
141 |
+
video_path = os.path.join(tmpdir, "video.mp4")
|
142 |
+
cmd = ["yt-dlp", "-f", "mp4", "-o", video_path, youtube_url]
|
143 |
+
subprocess.run(cmd, check=True)
|
144 |
+
# Extract audio for ASR
|
145 |
+
audio_path = os.path.join(tmpdir, "audio.mp3")
|
146 |
+
cmd_audio = ["yt-dlp", "-f", "bestaudio", "--extract-audio", "--audio-format", "mp3", "-o", audio_path, youtube_url]
|
147 |
+
subprocess.run(cmd_audio, check=True)
|
148 |
+
# Transcribe audio
|
149 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
150 |
+
result = asr(audio_path)
|
151 |
+
transcript = result["text"]
|
152 |
+
# Extract frames for vision QA
|
153 |
+
cap = cv2.VideoCapture(video_path)
|
154 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
155 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
156 |
+
frames = []
|
157 |
+
for i in range(0, frame_count, max(1, fps*5)):
|
158 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
159 |
+
ret, frame = cap.read()
|
160 |
+
if not ret:
|
161 |
+
break
|
162 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
163 |
+
frames.append(img)
|
164 |
+
cap.release()
|
165 |
+
# Object detection (YOLOv8)
|
166 |
+
try:
|
167 |
+
from ultralytics import YOLO
|
168 |
+
yolo = YOLO("yolov8n.pt")
|
169 |
+
detections = []
|
170 |
+
for img in frames:
|
171 |
+
results = yolo(np.array(img))
|
172 |
+
for r in results:
|
173 |
+
for c in r.boxes.cls:
|
174 |
+
detections.append(yolo.model.names[int(c)])
|
175 |
+
detection_summary = {}
|
176 |
+
for obj in detections:
|
177 |
+
detection_summary[obj] = detection_summary.get(obj, 0) + 1
|
178 |
+
except Exception as e:
|
179 |
+
logging.error(f"YOLOv8 error: {e}")
|
180 |
+
detection_summary = {}
|
181 |
+
# Image captioning (BLIP)
|
182 |
+
try:
|
183 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
184 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
185 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
186 |
+
captions = []
|
187 |
+
for img in frames:
|
188 |
+
inputs = processor(img, return_tensors="pt")
|
189 |
+
out = model.generate(**inputs)
|
190 |
+
captions.append(processor.decode(out[0], skip_special_tokens=True))
|
191 |
+
except Exception as e:
|
192 |
+
logging.error(f"BLIP error: {e}")
|
193 |
+
captions = []
|
194 |
+
context = f"Transcript: {transcript}\nCaptions: {' | '.join(captions)}\nDetections: {detection_summary}"
|
195 |
+
answer = extractive_qa(question, context)
|
196 |
+
return answer
|
197 |
+
except Exception as e:
|
198 |
+
logging.error(f"YouTube video QA error: {e}")
|
199 |
+
return f"Video analysis error: {e}"
|
200 |
+
|
201 |
+
TOOL_REGISTRY = {
|
202 |
+
"llama3_chat": llama3_chat,
|
203 |
+
"mixtral_chat": mixtral_chat,
|
204 |
+
"extractive_qa": extractive_qa,
|
205 |
+
"table_qa": table_qa,
|
206 |
+
"asr_transcribe": asr_transcribe,
|
207 |
+
"image_caption": image_caption,
|
208 |
+
"code_analysis": code_analysis,
|
209 |
+
"youtube_video_qa": youtube_video_qa,
|
210 |
+
}
|
211 |
+
|
212 |
+
class ModularGAIAAgent:
|
213 |
+
def __init__(self, api_url=DEFAULT_API_URL, tool_registry=TOOL_REGISTRY):
|
214 |
+
self.api_url = api_url
|
215 |
+
self.tools = tool_registry
|
216 |
+
self.reasoning_trace = []
|
217 |
+
self.file_cache = set(os.listdir('.'))
|
218 |
+
|
219 |
+
def fetch_questions(self, from_api=True, questions_path="Hugging Face Questions"):
|
220 |
+
if from_api:
|
221 |
+
r = requests.get(f"{self.api_url}/questions")
|
222 |
+
r.raise_for_status()
|
223 |
+
return r.json()
|
224 |
+
else:
|
225 |
+
with open(questions_path) as f:
|
226 |
+
data = f.read()
|
227 |
+
start = data.find("[")
|
228 |
+
end = data.rfind("]") + 1
|
229 |
+
questions = json.loads(data[start:end])
|
230 |
+
return questions
|
231 |
+
|
232 |
+
def download_file(self, file_id, file_name=None):
|
233 |
+
if not file_name:
|
234 |
+
file_name = file_id
|
235 |
+
if file_name in self.file_cache:
|
236 |
+
return file_name
|
237 |
+
url = f"{self.api_url}/files/{file_id}"
|
238 |
+
r = requests.get(url)
|
239 |
+
if r.status_code == 200:
|
240 |
+
with open(file_name, "wb") as f:
|
241 |
+
f.write(r.content)
|
242 |
+
self.file_cache.add(file_name)
|
243 |
+
return file_name
|
244 |
+
else:
|
245 |
+
self.reasoning_trace.append(f"Failed to download file {file_id} (status {r.status_code})")
|
246 |
+
return None
|
247 |
+
|
248 |
+
def detect_file_type(self, file_name):
|
249 |
+
ext = os.path.splitext(file_name)[-1].lower()
|
250 |
+
if ext in ['.mp3', '.wav', '.flac']:
|
251 |
+
return 'audio'
|
252 |
+
elif ext in ['.png', '.jpg', '.jpeg', '.bmp']:
|
253 |
+
return 'image'
|
254 |
+
elif ext in ['.py']:
|
255 |
+
return 'code'
|
256 |
+
elif ext in ['.xlsx']:
|
257 |
+
return 'excel'
|
258 |
+
elif ext in ['.csv']:
|
259 |
+
return 'csv'
|
260 |
+
elif ext in ['.json']:
|
261 |
+
return 'json'
|
262 |
+
elif ext in ['.txt', '.md']:
|
263 |
+
return 'text'
|
264 |
+
else:
|
265 |
+
return 'unknown'
|
266 |
+
|
267 |
+
def analyze_file(self, file_name, file_type):
|
268 |
+
if file_type == 'audio':
|
269 |
+
transcript = self.tools['asr_transcribe'](file_name)
|
270 |
+
self.reasoning_trace.append(f"Transcribed audio: {transcript[:100]}...")
|
271 |
+
return transcript
|
272 |
+
elif file_type == 'image':
|
273 |
+
caption = self.tools['image_caption'](file_name)
|
274 |
+
self.reasoning_trace.append(f"Image caption: {caption}")
|
275 |
+
return caption
|
276 |
+
elif file_type == 'code':
|
277 |
+
result = self.tools['code_analysis'](file_name)
|
278 |
+
self.reasoning_trace.append(f"Code analysis result: {result}")
|
279 |
+
return result
|
280 |
+
elif file_type == 'excel':
|
281 |
+
wb = openpyxl.load_workbook(file_name)
|
282 |
+
ws = wb.active
|
283 |
+
data = list(ws.values)
|
284 |
+
headers = data[0]
|
285 |
+
table = [dict(zip(headers, row)) for row in data[1:]]
|
286 |
+
self.reasoning_trace.append(f"Excel table loaded: {table[:2]}...")
|
287 |
+
return table
|
288 |
+
elif file_type == 'csv':
|
289 |
+
df = pd.read_csv(file_name)
|
290 |
+
table = df.to_dict(orient='records')
|
291 |
+
self.reasoning_trace.append(f"CSV table loaded: {table[:2]}...")
|
292 |
+
return table
|
293 |
+
elif file_type == 'json':
|
294 |
+
with open(file_name) as f:
|
295 |
+
data = json.load(f)
|
296 |
+
self.reasoning_trace.append(f"JSON loaded: {str(data)[:100]}...")
|
297 |
+
return data
|
298 |
+
elif file_type == 'text':
|
299 |
+
with open(file_name) as f:
|
300 |
+
text = f.read()
|
301 |
+
self.reasoning_trace.append(f"Text loaded: {text[:100]}...")
|
302 |
+
return text
|
303 |
+
else:
|
304 |
+
self.reasoning_trace.append(f"Unknown file type: {file_name}")
|
305 |
+
return None
|
306 |
+
|
307 |
+
def answer_question(self, question_obj):
|
308 |
+
self.reasoning_trace = []
|
309 |
+
q = question_obj["question"]
|
310 |
+
file_name = question_obj.get("file_name", "")
|
311 |
+
file_content = None
|
312 |
+
file_type = None
|
313 |
+
# YouTube video question detection
|
314 |
+
if "youtube.com" in q or "youtu.be" in q:
|
315 |
+
url = None
|
316 |
+
for word in q.split():
|
317 |
+
if "youtube.com" in word or "youtu.be" in word:
|
318 |
+
url = word.strip().strip(',')
|
319 |
+
break
|
320 |
+
if url:
|
321 |
+
answer = self.tools['youtube_video_qa'](url, q)
|
322 |
+
self.reasoning_trace.append(f"YouTube video analyzed: {url}")
|
323 |
+
self.reasoning_trace.append(f"Final answer: {answer}")
|
324 |
+
return self.format_answer(answer), self.reasoning_trace
|
325 |
+
if file_name:
|
326 |
+
file_id = file_name.split('.')[0]
|
327 |
+
local_file = self.download_file(file_id, file_name)
|
328 |
+
if local_file:
|
329 |
+
file_type = self.detect_file_type(local_file)
|
330 |
+
file_content = self.analyze_file(local_file, file_type)
|
331 |
+
# Plan: choose tool based on question and file
|
332 |
+
if file_type == 'audio' or file_type == 'text':
|
333 |
+
if file_content:
|
334 |
+
answer = self.tools['extractive_qa'](q, file_content)
|
335 |
+
else:
|
336 |
+
answer = self.tools['llama3_chat'](q)
|
337 |
+
elif file_type == 'excel' or file_type == 'csv':
|
338 |
+
if file_content:
|
339 |
+
answer = self.tools['table_qa'](q, file_content)
|
340 |
+
else:
|
341 |
+
answer = self.tools['llama3_chat'](q)
|
342 |
+
elif file_type == 'image':
|
343 |
+
if file_content:
|
344 |
+
answer = self.tools['llama3_chat'](f"{q}\nImage description: {file_content}")
|
345 |
+
else:
|
346 |
+
answer = self.tools['llama3_chat'](q)
|
347 |
+
elif file_type == 'code':
|
348 |
+
answer = file_content
|
349 |
+
else:
|
350 |
+
answer = self.tools['llama3_chat'](q)
|
351 |
+
self.reasoning_trace.append(f"Final answer: {answer}")
|
352 |
+
return self.format_answer(answer), self.reasoning_trace
|
353 |
+
|
354 |
+
def format_answer(self, answer):
|
355 |
+
if isinstance(answer, str):
|
356 |
+
answer = answer.strip().rstrip('.')
|
357 |
+
for prefix in ['answer:', 'result:', 'the answer is', 'final answer:', 'response:']:
|
358 |
+
if answer.lower().startswith(prefix):
|
359 |
+
answer = answer[len(prefix):].strip()
|
360 |
+
import re
|
361 |
+
answer = re.sub(r'\b(the|a|an)\b ', '', answer, flags=re.IGNORECASE)
|
362 |
+
answer = answer.strip().rstrip('.')
|
363 |
+
return answer
|
364 |
+
|
365 |
+
# --- Basic Agent Definition (now wraps ModularGAIAAgent) ---
|
366 |
class BasicAgent:
|
367 |
def __init__(self):
|
368 |
print("BasicAgent (GAIA Modular Agent) initialized.")
|
|
|
482 |
results_df = pd.DataFrame(results_log)
|
483 |
return status_message, results_df
|
484 |
|
485 |
+
# --- Build Gradio Interface using Blocks ---
|
486 |
with gr.Blocks() as demo:
|
487 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
488 |
gr.Markdown(
|
489 |
"""
|
490 |
**Instructions:**
|
491 |
+
|
492 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
493 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
494 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
495 |
+
|
496 |
---
|
497 |
**Disclaimers:**
|
498 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
499 |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
500 |
"""
|
501 |
)
|
502 |
+
|
503 |
gr.LoginButton()
|
504 |
+
|
505 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
506 |
+
|
507 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
508 |
+
# Removed max_rows=10 from DataFrame constructor
|
509 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
510 |
+
|
511 |
run_button.click(
|
512 |
fn=run_and_submit_all,
|
513 |
outputs=[status_output, results_table]
|
|
|
515 |
|
516 |
if __name__ == "__main__":
|
517 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
518 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
519 |
space_host_startup = os.getenv("SPACE_HOST")
|
520 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
521 |
+
|
522 |
if space_host_startup:
|
523 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
524 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
525 |
else:
|
526 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
527 |
+
|
528 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
529 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
530 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
531 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
532 |
else:
|
533 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
534 |
+
|
535 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
536 |
+
|
537 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
538 |
+
demo.launch(debug=True, share=False)
|
gaia_agent.py
DELETED
@@ -1,397 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
🚀 Enhanced GAIA Agent - Full GAIA Benchmark Implementation
|
4 |
-
Optimized for 30%+ performance on GAIA benchmark with complete API integration
|
5 |
-
"""
|
6 |
-
|
7 |
-
import os
|
8 |
-
import re
|
9 |
-
import json
|
10 |
-
import base64
|
11 |
-
import logging
|
12 |
-
import requests
|
13 |
-
from typing import Dict, List, Any, Optional, Tuple
|
14 |
-
from urllib.parse import urlparse, quote
|
15 |
-
from io import BytesIO
|
16 |
-
import pandas as pd
|
17 |
-
import numpy as np
|
18 |
-
from datetime import datetime
|
19 |
-
from bs4 import BeautifulSoup
|
20 |
-
# import markdownify # Removed for compatibility
|
21 |
-
from huggingface_hub import InferenceClient
|
22 |
-
import mimetypes
|
23 |
-
import openpyxl
|
24 |
-
import cv2
|
25 |
-
import torch
|
26 |
-
from PIL import Image
|
27 |
-
import subprocess
|
28 |
-
import tempfile
|
29 |
-
|
30 |
-
# Configure logging
|
31 |
-
logging.basicConfig(filename='gaia_agent.log', level=logging.INFO, format='%(asctime)s %(levelname)s:%(message)s')
|
32 |
-
logger = logging.getLogger(__name__)
|
33 |
-
|
34 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
35 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
36 |
-
|
37 |
-
# --- Tool/LLM Wrappers ---
|
38 |
-
def llama3_chat(prompt):
|
39 |
-
try:
|
40 |
-
client = InferenceClient(provider="fireworks-ai", api_key=HF_TOKEN)
|
41 |
-
completion = client.chat.completions.create(
|
42 |
-
model="meta-llama/Llama-3.1-8B-Instruct",
|
43 |
-
messages=[{"role": "user", "content": prompt}],
|
44 |
-
)
|
45 |
-
return completion.choices[0].message.content
|
46 |
-
except Exception as e:
|
47 |
-
logging.error(f"llama3_chat error: {e}")
|
48 |
-
return f"LLM error: {e}"
|
49 |
-
|
50 |
-
def mixtral_chat(prompt):
|
51 |
-
try:
|
52 |
-
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
|
53 |
-
completion = client.chat.completions.create(
|
54 |
-
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
55 |
-
messages=[{"role": "user", "content": prompt}],
|
56 |
-
)
|
57 |
-
return completion.choices[0].message.content
|
58 |
-
except Exception as e:
|
59 |
-
logging.error(f"mixtral_chat error: {e}")
|
60 |
-
return f"LLM error: {e}"
|
61 |
-
|
62 |
-
def extractive_qa(question, context):
|
63 |
-
try:
|
64 |
-
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
|
65 |
-
answer = client.question_answering(
|
66 |
-
question=question,
|
67 |
-
context=context,
|
68 |
-
model="deepset/roberta-base-squad2",
|
69 |
-
)
|
70 |
-
return answer["answer"]
|
71 |
-
except Exception as e:
|
72 |
-
logging.error(f"extractive_qa error: {e}")
|
73 |
-
return f"QA error: {e}"
|
74 |
-
|
75 |
-
def table_qa(query, table):
|
76 |
-
try:
|
77 |
-
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
|
78 |
-
answer = client.table_question_answering(
|
79 |
-
query=query,
|
80 |
-
table=table,
|
81 |
-
model="google/tapas-large-finetuned-wtq",
|
82 |
-
)
|
83 |
-
return answer["answer"]
|
84 |
-
except Exception as e:
|
85 |
-
logging.error(f"table_qa error: {e}")
|
86 |
-
return f"Table QA error: {e}"
|
87 |
-
|
88 |
-
def asr_transcribe(audio_path):
|
89 |
-
try:
|
90 |
-
import torchaudio
|
91 |
-
from transformers import pipeline
|
92 |
-
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
93 |
-
result = asr(audio_path)
|
94 |
-
return result["text"]
|
95 |
-
except Exception as e:
|
96 |
-
logging.error(f"asr_transcribe error: {e}")
|
97 |
-
return f"ASR error: {e}"
|
98 |
-
|
99 |
-
def image_caption(image_path):
|
100 |
-
try:
|
101 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
102 |
-
from PIL import Image
|
103 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
104 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
105 |
-
raw_image = Image.open(image_path).convert('RGB')
|
106 |
-
inputs = processor(raw_image, return_tensors="pt")
|
107 |
-
out = model.generate(**inputs)
|
108 |
-
return processor.decode(out[0], skip_special_tokens=True)
|
109 |
-
except Exception as e:
|
110 |
-
logging.error(f"image_caption error: {e}")
|
111 |
-
return f"Image captioning error: {e}"
|
112 |
-
|
113 |
-
def code_analysis(py_path):
|
114 |
-
try:
|
115 |
-
# Hardened: run code in subprocess with timeout and memory limit
|
116 |
-
with open(py_path) as f:
|
117 |
-
code = f.read()
|
118 |
-
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as tmp:
|
119 |
-
tmp.write(code)
|
120 |
-
tmp_path = tmp.name
|
121 |
-
try:
|
122 |
-
result = subprocess.run([
|
123 |
-
"python3", tmp_path
|
124 |
-
], capture_output=True, text=True, timeout=5)
|
125 |
-
if result.returncode == 0:
|
126 |
-
output = result.stdout.strip().split('\n')
|
127 |
-
return output[-1] if output else ''
|
128 |
-
else:
|
129 |
-
logging.error(f"code_analysis subprocess error: {result.stderr}")
|
130 |
-
return f"Code error: {result.stderr}"
|
131 |
-
except subprocess.TimeoutExpired:
|
132 |
-
logging.error("code_analysis timeout")
|
133 |
-
return "Code execution timed out"
|
134 |
-
finally:
|
135 |
-
os.remove(tmp_path)
|
136 |
-
except Exception as e:
|
137 |
-
logging.error(f"code_analysis error: {e}")
|
138 |
-
return f"Code analysis error: {e}"
|
139 |
-
|
140 |
-
def youtube_video_qa(youtube_url, question):
|
141 |
-
import subprocess
|
142 |
-
import tempfile
|
143 |
-
import os
|
144 |
-
from transformers import pipeline
|
145 |
-
try:
|
146 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
147 |
-
# Download video
|
148 |
-
video_path = os.path.join(tmpdir, "video.mp4")
|
149 |
-
cmd = ["yt-dlp", "-f", "mp4", "-o", video_path, youtube_url]
|
150 |
-
subprocess.run(cmd, check=True)
|
151 |
-
# Extract audio for ASR
|
152 |
-
audio_path = os.path.join(tmpdir, "audio.mp3")
|
153 |
-
cmd_audio = ["yt-dlp", "-f", "bestaudio", "--extract-audio", "--audio-format", "mp3", "-o", audio_path, youtube_url]
|
154 |
-
subprocess.run(cmd_audio, check=True)
|
155 |
-
# Transcribe audio
|
156 |
-
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
157 |
-
result = asr(audio_path)
|
158 |
-
transcript = result["text"]
|
159 |
-
# Extract frames for vision QA
|
160 |
-
cap = cv2.VideoCapture(video_path)
|
161 |
-
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
162 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
163 |
-
frames = []
|
164 |
-
for i in range(0, frame_count, max(1, fps*5)):
|
165 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
166 |
-
ret, frame = cap.read()
|
167 |
-
if not ret:
|
168 |
-
break
|
169 |
-
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
170 |
-
frames.append(img)
|
171 |
-
cap.release()
|
172 |
-
# Object detection (YOLOv8)
|
173 |
-
try:
|
174 |
-
from ultralytics import YOLO
|
175 |
-
yolo = YOLO("yolov8n.pt")
|
176 |
-
detections = []
|
177 |
-
for img in frames:
|
178 |
-
results = yolo(np.array(img))
|
179 |
-
for r in results:
|
180 |
-
for c in r.boxes.cls:
|
181 |
-
detections.append(yolo.model.names[int(c)])
|
182 |
-
detection_summary = {}
|
183 |
-
for obj in detections:
|
184 |
-
detection_summary[obj] = detection_summary.get(obj, 0) + 1
|
185 |
-
except Exception as e:
|
186 |
-
logging.error(f"YOLOv8 error: {e}")
|
187 |
-
detection_summary = {}
|
188 |
-
# Image captioning (BLIP)
|
189 |
-
try:
|
190 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
191 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
192 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
193 |
-
captions = []
|
194 |
-
for img in frames:
|
195 |
-
inputs = processor(img, return_tensors="pt")
|
196 |
-
out = model.generate(**inputs)
|
197 |
-
captions.append(processor.decode(out[0], skip_special_tokens=True))
|
198 |
-
except Exception as e:
|
199 |
-
logging.error(f"BLIP error: {e}")
|
200 |
-
captions = []
|
201 |
-
# Aggregate and answer
|
202 |
-
context = f"Transcript: {transcript}\nCaptions: {' | '.join(captions)}\nDetections: {detection_summary}"
|
203 |
-
answer = extractive_qa(question, context)
|
204 |
-
return answer
|
205 |
-
except Exception as e:
|
206 |
-
logging.error(f"YouTube video QA error: {e}")
|
207 |
-
return f"Video analysis error: {e}"
|
208 |
-
|
209 |
-
# --- Tool Registry ---
|
210 |
-
TOOL_REGISTRY = {
|
211 |
-
"llama3_chat": llama3_chat,
|
212 |
-
"mixtral_chat": mixtral_chat,
|
213 |
-
"extractive_qa": extractive_qa,
|
214 |
-
"table_qa": table_qa,
|
215 |
-
"asr_transcribe": asr_transcribe,
|
216 |
-
"image_caption": image_caption,
|
217 |
-
"code_analysis": code_analysis,
|
218 |
-
"youtube_video_qa": youtube_video_qa,
|
219 |
-
}
|
220 |
-
|
221 |
-
class ModularGAIAAgent:
|
222 |
-
"""
|
223 |
-
Modular GAIA Agent: fetches questions from API, downloads files, routes to tools/LLMs, chains outputs, and formats GAIA-compliant answers.
|
224 |
-
"""
|
225 |
-
def __init__(self, api_url=DEFAULT_API_URL, tool_registry=TOOL_REGISTRY):
|
226 |
-
self.api_url = api_url
|
227 |
-
self.tools = tool_registry
|
228 |
-
self.reasoning_trace = []
|
229 |
-
self.file_cache = set(os.listdir('.'))
|
230 |
-
|
231 |
-
def fetch_questions(self, from_api=True, questions_path="Hugging Face Questions") -> List[Dict[str, Any]]:
|
232 |
-
if from_api:
|
233 |
-
r = requests.get(f"{self.api_url}/questions")
|
234 |
-
r.raise_for_status()
|
235 |
-
return r.json()
|
236 |
-
else:
|
237 |
-
with open(questions_path) as f:
|
238 |
-
data = f.read()
|
239 |
-
start = data.find("[")
|
240 |
-
end = data.rfind("]") + 1
|
241 |
-
questions = json.loads(data[start:end])
|
242 |
-
return questions
|
243 |
-
|
244 |
-
def download_file(self, file_id, file_name=None):
|
245 |
-
if not file_name:
|
246 |
-
file_name = file_id
|
247 |
-
if file_name in self.file_cache:
|
248 |
-
return file_name
|
249 |
-
url = f"{self.api_url}/files/{file_id}"
|
250 |
-
r = requests.get(url)
|
251 |
-
if r.status_code == 200:
|
252 |
-
with open(file_name, "wb") as f:
|
253 |
-
f.write(r.content)
|
254 |
-
self.file_cache.add(file_name)
|
255 |
-
return file_name
|
256 |
-
else:
|
257 |
-
self.reasoning_trace.append(f"Failed to download file {file_id} (status {r.status_code})")
|
258 |
-
return None
|
259 |
-
|
260 |
-
def detect_file_type(self, file_name):
|
261 |
-
ext = os.path.splitext(file_name)[-1].lower()
|
262 |
-
if ext in ['.mp3', '.wav', '.flac']:
|
263 |
-
return 'audio'
|
264 |
-
elif ext in ['.png', '.jpg', '.jpeg', '.bmp']:
|
265 |
-
return 'image'
|
266 |
-
elif ext in ['.py']:
|
267 |
-
return 'code'
|
268 |
-
elif ext in ['.xlsx']:
|
269 |
-
return 'excel'
|
270 |
-
elif ext in ['.csv']:
|
271 |
-
return 'csv'
|
272 |
-
elif ext in ['.json']:
|
273 |
-
return 'json'
|
274 |
-
elif ext in ['.txt', '.md']:
|
275 |
-
return 'text'
|
276 |
-
else:
|
277 |
-
return 'unknown'
|
278 |
-
|
279 |
-
def analyze_file(self, file_name, file_type):
|
280 |
-
if file_type == 'audio':
|
281 |
-
transcript = self.tools['asr_transcribe'](file_name)
|
282 |
-
self.reasoning_trace.append(f"Transcribed audio: {transcript[:100]}...")
|
283 |
-
return transcript
|
284 |
-
elif file_type == 'image':
|
285 |
-
caption = self.tools['image_caption'](file_name)
|
286 |
-
self.reasoning_trace.append(f"Image caption: {caption}")
|
287 |
-
return caption
|
288 |
-
elif file_type == 'code':
|
289 |
-
result = self.tools['code_analysis'](file_name)
|
290 |
-
self.reasoning_trace.append(f"Code analysis result: {result}")
|
291 |
-
return result
|
292 |
-
elif file_type == 'excel':
|
293 |
-
wb = openpyxl.load_workbook(file_name)
|
294 |
-
ws = wb.active
|
295 |
-
data = list(ws.values)
|
296 |
-
headers = data[0]
|
297 |
-
table = [dict(zip(headers, row)) for row in data[1:]]
|
298 |
-
self.reasoning_trace.append(f"Excel table loaded: {table[:2]}...")
|
299 |
-
return table
|
300 |
-
elif file_type == 'csv':
|
301 |
-
df = pd.read_csv(file_name)
|
302 |
-
table = df.to_dict(orient='records')
|
303 |
-
self.reasoning_trace.append(f"CSV table loaded: {table[:2]}...")
|
304 |
-
return table
|
305 |
-
elif file_type == 'json':
|
306 |
-
with open(file_name) as f:
|
307 |
-
data = json.load(f)
|
308 |
-
self.reasoning_trace.append(f"JSON loaded: {str(data)[:100]}...")
|
309 |
-
return data
|
310 |
-
elif file_type == 'text':
|
311 |
-
with open(file_name) as f:
|
312 |
-
text = f.read()
|
313 |
-
self.reasoning_trace.append(f"Text loaded: {text[:100]}...")
|
314 |
-
return text
|
315 |
-
else:
|
316 |
-
self.reasoning_trace.append(f"Unknown file type: {file_name}")
|
317 |
-
return None
|
318 |
-
|
319 |
-
def answer_question(self, question_obj):
|
320 |
-
self.reasoning_trace = []
|
321 |
-
q = question_obj["question"]
|
322 |
-
file_name = question_obj.get("file_name", "")
|
323 |
-
file_content = None
|
324 |
-
file_type = None
|
325 |
-
# YouTube video question detection
|
326 |
-
if "youtube.com" in q or "youtu.be" in q:
|
327 |
-
url = None
|
328 |
-
for word in q.split():
|
329 |
-
if "youtube.com" in word or "youtu.be" in word:
|
330 |
-
url = word.strip().strip(',')
|
331 |
-
break
|
332 |
-
if url:
|
333 |
-
answer = self.tools['youtube_video_qa'](url, q)
|
334 |
-
self.reasoning_trace.append(f"YouTube video analyzed: {url}")
|
335 |
-
self.reasoning_trace.append(f"Final answer: {answer}")
|
336 |
-
return self.format_answer(answer), self.reasoning_trace
|
337 |
-
if file_name:
|
338 |
-
file_id = file_name.split('.')[0]
|
339 |
-
local_file = self.download_file(file_id, file_name)
|
340 |
-
if local_file:
|
341 |
-
file_type = self.detect_file_type(local_file)
|
342 |
-
file_content = self.analyze_file(local_file, file_type)
|
343 |
-
# Plan: choose tool based on question and file
|
344 |
-
if file_type == 'audio' or file_type == 'text':
|
345 |
-
if file_content:
|
346 |
-
answer = self.tools['extractive_qa'](q, file_content)
|
347 |
-
else:
|
348 |
-
answer = self.tools['llama3_chat'](q)
|
349 |
-
elif file_type == 'excel' or file_type == 'csv':
|
350 |
-
if file_content:
|
351 |
-
answer = self.tools['table_qa'](q, file_content)
|
352 |
-
else:
|
353 |
-
answer = self.tools['llama3_chat'](q)
|
354 |
-
elif file_type == 'image':
|
355 |
-
if file_content:
|
356 |
-
answer = self.tools['llama3_chat'](f"{q}\nImage description: {file_content}")
|
357 |
-
else:
|
358 |
-
answer = self.tools['llama3_chat'](q)
|
359 |
-
elif file_type == 'code':
|
360 |
-
answer = file_content
|
361 |
-
else:
|
362 |
-
answer = self.tools['llama3_chat'](q)
|
363 |
-
self.reasoning_trace.append(f"Final answer: {answer}")
|
364 |
-
return self.format_answer(answer), self.reasoning_trace
|
365 |
-
|
366 |
-
def format_answer(self, answer):
|
367 |
-
# GAIA compliance: remove extra words, units, articles, etc.
|
368 |
-
if isinstance(answer, str):
|
369 |
-
answer = answer.strip().rstrip('.')
|
370 |
-
# Remove common prefixes
|
371 |
-
for prefix in ['answer:', 'result:', 'the answer is', 'final answer:', 'response:']:
|
372 |
-
if answer.lower().startswith(prefix):
|
373 |
-
answer = answer[len(prefix):].strip()
|
374 |
-
# Remove articles
|
375 |
-
import re
|
376 |
-
answer = re.sub(r'\b(the|a|an)\b ', '', answer, flags=re.IGNORECASE)
|
377 |
-
# Remove trailing punctuation
|
378 |
-
answer = answer.strip().rstrip('.')
|
379 |
-
return answer
|
380 |
-
|
381 |
-
def run(self, from_api=True, questions_path="Hugging Face Questions"):
|
382 |
-
questions = self.fetch_questions(from_api=from_api, questions_path=questions_path)
|
383 |
-
results = []
|
384 |
-
for qobj in questions:
|
385 |
-
answer, trace = self.answer_question(qobj)
|
386 |
-
results.append({
|
387 |
-
"task_id": qobj["task_id"],
|
388 |
-
"answer": answer,
|
389 |
-
"reasoning_trace": trace
|
390 |
-
})
|
391 |
-
return results
|
392 |
-
|
393 |
-
# --- Usage Example ---
|
394 |
-
# agent = ModularGAIAAgent()
|
395 |
-
# results = agent.run()
|
396 |
-
# for r in results:
|
397 |
-
# print(r)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,19 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
pandas
|
4 |
-
numpy
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
regex==2023.10.3
|
9 |
-
beautifulsoup4==4.12.2
|
10 |
-
pillow==10.0.1
|
11 |
transformers
|
12 |
huggingface_hub
|
13 |
-
openpyxl
|
14 |
-
torchaudio
|
15 |
-
Pillow
|
16 |
opencv-python
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
1 |
+
gradio
|
2 |
+
requests
|
3 |
+
pandas
|
4 |
+
numpy
|
5 |
+
openpyxl
|
6 |
+
pillow
|
7 |
+
torch
|
|
|
|
|
|
|
8 |
transformers
|
9 |
huggingface_hub
|
|
|
|
|
|
|
10 |
opencv-python
|
11 |
+
beautifulsoup4
|
12 |
+
yt-dlp
|
13 |
+
ultralytics
|
tests/test_agent_core.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
import pytest
|
2 |
-
from gaia_agent import ModularGAIAAgent
|
3 |
-
import os
|
4 |
-
|
5 |
-
@pytest.fixture
|
6 |
-
def agent():
|
7 |
-
return ModularGAIAAgent()
|
8 |
-
|
9 |
-
def test_tool_registry(agent):
|
10 |
-
assert 'llama3_chat' in agent.tools
|
11 |
-
assert 'extractive_qa' in agent.tools
|
12 |
-
assert 'youtube_video_qa' in agent.tools
|
13 |
-
|
14 |
-
def test_fetch_questions_api(monkeypatch, agent):
|
15 |
-
class MockResponse:
|
16 |
-
def json(self):
|
17 |
-
return [{"task_id": "1", "question": "What is 2+2?", "file_name": ""}]
|
18 |
-
def raise_for_status(self):
|
19 |
-
pass
|
20 |
-
monkeypatch.setattr("requests.get", lambda url: MockResponse())
|
21 |
-
questions = agent.fetch_questions(from_api=True)
|
22 |
-
assert isinstance(questions, list)
|
23 |
-
assert questions[0]["question"] == "What is 2+2?"
|
24 |
-
|
25 |
-
def test_download_file(monkeypatch, agent, tmp_path):
|
26 |
-
test_file = tmp_path / "test.txt"
|
27 |
-
monkeypatch.setattr("requests.get", lambda url: type("R", (), {"status_code": 200, "content": b"hello"})())
|
28 |
-
fname = agent.download_file("testid", str(test_file))
|
29 |
-
assert os.path.exists(fname)
|
30 |
-
with open(fname) as f:
|
31 |
-
assert f.read() == "hello"
|
32 |
-
|
33 |
-
def test_end_to_end(monkeypatch, agent):
|
34 |
-
# Mock API and tools for a simple run
|
35 |
-
monkeypatch.setattr(agent, "fetch_questions", lambda from_api, questions_path=None: [{"task_id": "1", "question": "What is 2+2?", "file_name": ""}])
|
36 |
-
agent.tools['llama3_chat'] = lambda prompt: "4"
|
37 |
-
results = agent.run(from_api=True)
|
38 |
-
assert results[0]["answer"] == "4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_video_qa.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
import pytest
|
2 |
-
from gaia_agent import ModularGAIAAgent
|
3 |
-
|
4 |
-
@pytest.fixture
|
5 |
-
def agent():
|
6 |
-
return ModularGAIAAgent()
|
7 |
-
|
8 |
-
def test_youtube_video_qa(monkeypatch, agent):
|
9 |
-
# Mock subprocess, ASR, YOLO, BLIP, and extractive_qa
|
10 |
-
monkeypatch.setattr("subprocess.run", lambda *a, **k: None)
|
11 |
-
monkeypatch.setattr("cv2.VideoCapture", lambda *a, **k: type("C", (), {
|
12 |
-
"get": lambda self, x: 10 if x == 7 else 1, # 10 frames, 1 fps
|
13 |
-
"set": lambda self, x, y: None,
|
14 |
-
"read": lambda self: (True, __import__('numpy').zeros((10,10,3), dtype='uint8')),
|
15 |
-
"release": lambda self: None
|
16 |
-
})())
|
17 |
-
monkeypatch.setattr("PIL.Image.fromarray", lambda arr: arr)
|
18 |
-
agent.tools['extractive_qa'] = lambda q, c: "bird species: 5"
|
19 |
-
# Simulate a YouTube question
|
20 |
-
qobj = {"task_id": "yt1", "question": "In the video https://youtube.com/watch?v=abc123, what is the highest number of bird species to be on camera simultaneously?", "file_name": ""}
|
21 |
-
answer, trace = agent.answer_question(qobj)
|
22 |
-
assert "bird species" in answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|