import os import gradio as gr import requests import inspect import pandas as pd from typing import Any # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Advanced Modular Agent Implementation --- import json import logging import mimetypes import openpyxl import numpy as np from datetime import datetime from io import BytesIO from PIL import Image import subprocess import tempfile from huggingface_hub import InferenceClient import cv2 import torch from bs4 import BeautifulSoup import openai logging.basicConfig(filename='gaia_agent.log', level=logging.INFO, format='%(asctime)s %(levelname)s:%(message)s') logger = logging.getLogger(__name__) HF_TOKEN = os.environ.get("HF_TOKEN", "") def llama3_chat(prompt): try: client = InferenceClient(provider="fireworks-ai", api_key=HF_TOKEN) completion = client.chat.completions.create( model="meta-llama/Llama-3.1-8B-Instruct", messages=[{"role": "user", "content": prompt}], ) return completion.choices[0].message.content except Exception as e: logging.error(f"llama3_chat error: {e}") return f"LLM error: {e}" def mixtral_chat(prompt): try: client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN) completion = client.chat.completions.create( model="mistralai/Mixtral-8x7B-Instruct-v0.1", messages=[{"role": "user", "content": prompt}], ) return completion.choices[0].message.content except Exception as e: logging.error(f"mixtral_chat error: {e}") return f"LLM error: {e}" def extractive_qa(question, context): try: client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN) answer = client.question_answering( question=question, context=context, model="deepset/roberta-base-squad2", ) return answer["answer"] except Exception as e: logging.error(f"extractive_qa error: {e}") return f"QA error: {e}" def table_qa(query, table): try: client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN) answer = client.table_question_answering( query=query, table=table, model="google/tapas-large-finetuned-wtq", ) return answer["answer"] except Exception as e: logging.error(f"table_qa error: {e}") return f"Table QA error: {e}" def asr_transcribe(audio_path): try: import torchaudio from transformers import pipeline asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") result = asr(audio_path) return result["text"] except Exception as e: logging.error(f"asr_transcribe error: {e}") return f"ASR error: {e}" def image_caption(image_path): try: from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") raw_image = Image.open(image_path).convert('RGB') inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) except Exception as e: logging.error(f"image_caption error: {e}") return f"Image captioning error: {e}" def code_analysis(py_path): try: with open(py_path) as f: code = f.read() with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as tmp: tmp.write(code) tmp_path = tmp.name try: result = subprocess.run([ "python3", tmp_path ], capture_output=True, text=True, timeout=5) if result.returncode == 0: output = result.stdout.strip().split('\n') return output[-1] if output else '' else: logging.error(f"code_analysis subprocess error: {result.stderr}") return f"Code error: {result.stderr}" except subprocess.TimeoutExpired: logging.error("code_analysis timeout") return "Code execution timed out" finally: os.remove(tmp_path) except Exception as e: logging.error(f"code_analysis error: {e}") return f"Code analysis error: {e}" def youtube_video_qa(youtube_url, question): import subprocess import tempfile import os from transformers import pipeline try: with tempfile.TemporaryDirectory() as tmpdir: # Download video video_path = os.path.join(tmpdir, "video.mp4") cmd = ["yt-dlp", "-f", "mp4", "-o", video_path, youtube_url] subprocess.run(cmd, check=True) # Extract audio for ASR audio_path = os.path.join(tmpdir, "audio.mp3") cmd_audio = ["yt-dlp", "-f", "bestaudio", "--extract-audio", "--audio-format", "mp3", "-o", audio_path, youtube_url] subprocess.run(cmd_audio, check=True) # Transcribe audio asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") result = asr(audio_path) transcript = result["text"] # Extract frames for vision QA cap = cv2.VideoCapture(video_path) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) frames = [] for i in range(0, frame_count, max(1, fps*5)): cap.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = cap.read() if not ret: break img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) frames.append(img) cap.release() # Object detection (YOLOv8) try: from ultralytics import YOLO yolo = YOLO("yolov8n.pt") detections = [] for img in frames: results = yolo(np.array(img)) for r in results: for c in r.boxes.cls: detections.append(yolo.model.names[int(c)]) detection_summary = {} for obj in detections: detection_summary[obj] = detection_summary.get(obj, 0) + 1 except Exception as e: logging.error(f"YOLOv8 error: {e}") detection_summary = {} # Image captioning (BLIP) try: from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") captions = [] for img in frames: inputs = processor(img, return_tensors="pt") out = model.generate(**inputs) captions.append(processor.decode(out[0], skip_special_tokens=True)) except Exception as e: logging.error(f"BLIP error: {e}") captions = [] context = f"Transcript: {transcript}\nCaptions: {' | '.join(captions)}\nDetections: {detection_summary}" answer = extractive_qa(question, context) return answer except Exception as e: logging.error(f"YouTube video QA error: {e}") return f"Video analysis error: {e}" def web_search_duckduckgo(query, max_results=5): """DuckDuckGo web search tool: returns top snippets and URLs.""" try: import duckduckgo_search results = duckduckgo_search.DuckDuckGoSearch().search(query, max_results=max_results) snippets = [] for r in results: snippet = f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" snippets.append(snippet) return '\n---\n'.join(snippets) except Exception as e: logging.error(f"web_search_duckduckgo error: {e}") return f"Web search error: {e}" def gpt4_chat(prompt, api_key=None): """OpenAI GPT-4.1 chat completion.""" try: api_key = api_key or os.environ.get("OPENAI_API_KEY", "") if not api_key: return "No OpenAI API key provided." response = openai.ChatCompletion.create( model="gpt-4-1106-preview", messages=[{"role": "system", "content": "You are a general AI assistant. Answer using as few words as possible, in the required format. Use tools as needed, and only output the answer."}, {"role": "user", "content": prompt}], api_key=api_key, ) return response.choices[0].message['content'].strip() except Exception as e: logging.error(f"gpt4_chat error: {e}") return f"GPT-4 error: {e}" TOOL_REGISTRY = { "llama3_chat": llama3_chat, "mixtral_chat": mixtral_chat, "extractive_qa": extractive_qa, "table_qa": table_qa, "asr_transcribe": asr_transcribe, "image_caption": image_caption, "code_analysis": code_analysis, "youtube_video_qa": youtube_video_qa, "web_search_duckduckgo": web_search_duckduckgo, "gpt4_chat": gpt4_chat, } class ModularGAIAAgent: def __init__(self, api_url=DEFAULT_API_URL, tool_registry=TOOL_REGISTRY): self.api_url = api_url self.tools = tool_registry self.reasoning_trace = [] self.file_cache = set(os.listdir('.')) def fetch_questions(self, from_api=True, questions_path="Hugging Face Questions"): if from_api: r = requests.get(f"{self.api_url}/questions") r.raise_for_status() return r.json() else: with open(questions_path) as f: data = f.read() start = data.find("[") end = data.rfind("]") + 1 questions = json.loads(data[start:end]) return questions def download_file(self, file_id, file_name=None): if not file_name: file_name = file_id if file_name in self.file_cache: return file_name url = f"{self.api_url}/files/{file_id}" r = requests.get(url) if r.status_code == 200: with open(file_name, "wb") as f: f.write(r.content) self.file_cache.add(file_name) return file_name else: self.reasoning_trace.append(f"Failed to download file {file_id} (status {r.status_code})") return None def detect_file_type(self, file_name): ext = os.path.splitext(file_name)[-1].lower() if ext in ['.mp3', '.wav', '.flac']: return 'audio' elif ext in ['.png', '.jpg', '.jpeg', '.bmp']: return 'image' elif ext in ['.py']: return 'code' elif ext in ['.xlsx']: return 'excel' elif ext in ['.csv']: return 'csv' elif ext in ['.json']: return 'json' elif ext in ['.txt', '.md']: return 'text' else: return 'unknown' def analyze_file(self, file_name, file_type): if file_type == 'audio': transcript = self.tools['asr_transcribe'](file_name) self.reasoning_trace.append(f"Transcribed audio: {transcript[:100]}...") return transcript elif file_type == 'image': caption = self.tools['image_caption'](file_name) self.reasoning_trace.append(f"Image caption: {caption}") return caption elif file_type == 'code': result = self.tools['code_analysis'](file_name) self.reasoning_trace.append(f"Code analysis result: {result}") return result elif file_type == 'excel': wb = openpyxl.load_workbook(file_name) ws = wb.active data = list(ws.values) headers = data[0] table = [dict(zip(headers, row)) for row in data[1:]] self.reasoning_trace.append(f"Excel table loaded: {table[:2]}...") return table elif file_type == 'csv': df = pd.read_csv(file_name) table = df.to_dict(orient='records') self.reasoning_trace.append(f"CSV table loaded: {table[:2]}...") return table elif file_type == 'json': with open(file_name) as f: data = json.load(f) self.reasoning_trace.append(f"JSON loaded: {str(data)[:100]}...") return data elif file_type == 'text': with open(file_name) as f: text = f.read() self.reasoning_trace.append(f"Text loaded: {text[:100]}...") return text else: self.reasoning_trace.append(f"Unknown file type: {file_name}") return None def smart_tool_select(self, question, file_type=None): """Select the best tool(s) for the question, optionally using GPT-4.1 for planning.""" # Use GPT-4.1 to suggest a tool if available api_key = os.environ.get("OPENAI_API_KEY", "") if api_key: plan_prompt = f""" You are an expert AI agent. Given the following question and file type, suggest the best tool(s) to use from this list: {list(self.tools.keys())}. Question: {question} File type: {file_type} Respond with a comma-separated list of tool names only, in order of use. If unsure, start with web_search_duckduckgo. """ plan = gpt4_chat(plan_prompt, api_key=api_key) tool_names = [t.strip() for t in plan.split(',') if t.strip() in self.tools] if tool_names: return tool_names # Fallback: heuristic if file_type == 'audio': return ['asr_transcribe'] elif file_type == 'image': return ['image_caption'] elif file_type == 'code': return ['code_analysis'] elif file_type in ['excel', 'csv']: return ['table_qa'] elif 'youtube.com' in question or 'youtu.be' in question: return ['youtube_video_qa'] elif any(w in question.lower() for w in ['wikipedia', 'who', 'when', 'where', 'what', 'how', 'find', 'search']): return ['web_search_duckduckgo'] else: return ['llama3_chat'] def answer_question(self, question_obj): self.reasoning_trace = [] q = question_obj["question"] file_name = question_obj.get("file_name", "") file_content = None file_type = None if file_name: file_id = file_name.split('.')[0] local_file = self.download_file(file_id, file_name) if local_file: file_type = self.detect_file_type(local_file) file_content = self.analyze_file(local_file, file_type) # Smart tool selection tool_names = self.smart_tool_select(q, file_type) answer = None context = None for tool_name in tool_names: tool = self.tools[tool_name] if tool_name == 'web_search_duckduckgo': context = tool(q) # Use LLM to synthesize answer from snippets answer = llama3_chat(f"Answer the following question using ONLY the information below.\nQuestion: {q}\nSnippets:\n{context}\nAnswer:") elif tool_name == 'gpt4_chat': answer = tool(q) elif tool_name == 'table_qa' and file_content: answer = tool(q, file_content) elif tool_name in ['asr_transcribe', 'image_caption', 'code_analysis'] and file_content: answer = tool(file_name) elif tool_name == 'youtube_video_qa': answer = tool(q, q) else: answer = tool(q) if answer: break self.reasoning_trace.append(f"Tools used: {tool_names}") self.reasoning_trace.append(f"Final answer: {answer}") return self.format_answer(answer), self.reasoning_trace def format_answer(self, answer): # Strict GAIA: only the answer, no extra text, no prefix if isinstance(answer, str): return answer.strip().split('\n')[0] return str(answer) # --- Basic Agent Definition (now wraps ModularGAIAAgent) --- class BasicAgent: def __init__(self): print("BasicAgent (GAIA Modular Agent) initialized.") self.agent = ModularGAIAAgent() def __call__(self, question: str, file_name: str = "") -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") try: answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name": file_name}) print(f"Agent returning answer: {answer}") return answer except Exception as e: print(f"Agent error: {e}") return f"AGENT ERROR: {e}" def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") file_name = item.get("file_name", "") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: submitted_answer = agent(question_text, file_name) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}") print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Removed max_rows=10 from DataFrame constructor results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)