Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
import spaces | |
class LlamaGuardModeration: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model_id = "meta-llama/Llama-Guard-3-8B" # モデルIDを変更 | |
self.dtype = torch.bfloat16 | |
# HuggingFace tokenの取得 | |
self.huggingface_token = os.getenv('HUGGINGFACE_TOKEN') | |
if not self.huggingface_token: | |
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
# モデルの初期化 | |
self.initialize_model() | |
def initialize_model(self): | |
"""モデルとトークナイザーの初期化""" | |
if self.model is None: | |
# トークナイザーの初期化 | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
self.model_id, | |
token=self.huggingface_token | |
) | |
# モデルの初期化 | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.model_id, | |
torch_dtype=self.dtype, | |
device_map="auto", | |
token=self.huggingface_token, | |
low_cpu_mem_usage=True | |
) | |
def parse_llama_guard_output(result): | |
"""Llama Guardの出力を解析""" | |
safety_assessment = result.split("<END CONVERSATION>")[-1].strip() | |
lines = [line.strip().lower() for line in safety_assessment.split('\n') if line.strip()] | |
if not lines: | |
return "Error", "No valid output", safety_assessment | |
safety_status = next((line for line in lines if line in ['safe', 'unsafe']), None) | |
if safety_status == 'safe': | |
return "Safe", "None", safety_assessment | |
elif safety_status == 'unsafe': | |
violated_categories = next( | |
(lines[i+1] for i, line in enumerate(lines) if line == 'unsafe' and i+1 < len(lines)), | |
"Unspecified" | |
) | |
return "Unsafe", violated_categories, safety_assessment | |
else: | |
return "Error", f"Invalid output: {safety_status}", safety_assessment | |
def moderate(self, user_input, assistant_response): | |
"""モデレーション実行""" | |
chat = [ | |
{"role": "user", "content": user_input}, | |
{"role": "assistant", "content": assistant_response}, | |
] | |
input_ids = self.tokenizer.apply_chat_template( | |
chat, | |
return_tensors="pt" | |
).to(self.device) | |
with torch.no_grad(): | |
output = self.model.generate( | |
input_ids=input_ids, | |
max_new_tokens=200, | |
pad_token_id=self.tokenizer.eos_token_id, | |
do_sample=False | |
) | |
result = self.tokenizer.decode(output[0], skip_special_tokens=True) | |
return self.parse_llama_guard_output(result) | |
# モデレーターのインスタンス作成 | |
moderator = LlamaGuardModeration() | |
# Gradio インターフェースの設定 | |
iface = gr.Interface( | |
fn=moderator.moderate, | |
inputs=[ | |
gr.Textbox(lines=3, label="User Input"), | |
gr.Textbox(lines=3, label="Assistant Response") | |
], | |
outputs=[ | |
gr.Textbox(label="Safety Status"), | |
gr.Textbox(label="Violated Categories"), | |
gr.Textbox(label="Raw Output") | |
], | |
title="Llama Guard Moderation", | |
description="Enter a user input and an assistant response to check for content moderation." | |
) | |
if __name__ == "__main__": | |
iface.launch() |