scooter7 commited on
Commit
ee63c25
·
verified ·
1 Parent(s): 6db2a9e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +291 -0
app.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import os
3
+ import random
4
+ import uuid
5
+ import gradio as gr
6
+ import spaces
7
+ import numpy as np
8
+ from diffusers import PixArtAlphaPipeline, LCMScheduler
9
+ import torch
10
+ from typing import Tuple
11
+ from datetime import datetime
12
+
13
+ # Description for the app
14
+ DESCRIPTION = """
15
+ # Instant Image
16
+ ### Super fast text to Image Generator.
17
+ ### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
18
+ ### First Image processing takes time then images generate faster.
19
+ ### Must Try -> Instant Video https://huggingface.co/spaces/KingNish/Instant-Video
20
+ """
21
+ if not torch.cuda.is_available():
22
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
23
+
24
+ # Configuration and constants
25
+ MAX_SEED = np.iinfo(np.int32).max
26
+ CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
27
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
28
+ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
29
+ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
30
+ PORT = int(os.getenv("DEMO_PORT", "15432"))
31
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
32
+
33
+ # Define color-based attributes
34
+ color_attributes = {
35
+ "Purple": {"verbs": ["assist", "befriend", "care", "collaborate", "connect", "embrace", "empower", "encourage", "foster", "give", "help", "nourish", "nurture", "promote", "protect", "provide", "serve", "share", "shepherd", "steward", "tend", "uplift", "value", "welcome"], "adjectives": ["caring", "encouraging", "attentive", "compassionate", "empathetic", "generous", "hospitable", "nurturing", "protective", "selfless", "supportive", "welcoming"]},
36
+ "Green": {"verbs": ["analyze", "discover", "examine", "expand", "explore", "extend", "inquire", "journey", "launch", "move", "pioneer", "pursue", "question", "reach", "search", "uncover", "venture", "wonder"], "adjectives": ["adventurous", "curious", "discerning", "examining", "experiential", "exploratory", "inquisitive", "investigative", "intrepid", "philosophical"]},
37
+ "Maroon": {"verbs": ["accomplish", "achieve", "build", "challenge", "commit", "compete", "contend", "dedicate", "defend", "devote", "drive", "endeavor", "entrust", "endure", "fight", "grapple", "grow", "improve", "increase", "overcome", "persevere", "persist", "press on", "pursue", "resolve"], "adjectives": ["competitive", "determined", "gritty", "industrious", "persevering", "relentless", "resilient", "tenacious", "tough", "unwavering"]},
38
+ "Orange": {"verbs": ["compose", "conceptualize", "conceive", "craft", "create", "design", "dream", "envision", "express", "fashion", "form", "imagine", "interpret", "make", "originate", "paint", "perform", "portray", "realize", "shape"], "adjectives": ["artistic", "conceptual", "creative", "eclectic", "expressive", "imaginative", "interpretive", "novel", "original", "whimsical"]},
39
+ "Yellow": {"verbs": ["accelerate", "advance", "change", "conceive", "create", "engineer", "envision", "experiment", "dream", "ignite", "illuminate", "imagine", "innovate", "inspire", "invent", "pioneer", "progress", "shape", "spark", "solve", "transform", "unleash", "unlock"], "adjectives": ["advanced", "analytical", "brilliant", "experimental", "forward-thinking", "innovative", "intelligent", "inventive", "leading-edge", "visionary"]},
40
+ "Red": {"verbs": ["animate", "amuse", "captivate", "cheer", "delight", "encourage", "energize", "engage", "enjoy", "enliven", "entertain", "excite", "express", "inspire", "joke", "motivate", "play", "stir", "uplift"], "adjectives": ["dynamic", "energetic", "engaging", "entertaining", "enthusiastic", "exciting", "fun", "lively", "magnetic", "playful", "humorous"]},
41
+ "Blue": {"verbs": ["accomplish", "achieve", "affect", "assert", "cause", "command", "determine", "direct", "dominate", "drive", "empower", "establish", "guide", "impact", "impress", "influence", "inspire", "lead", "outpace", "outshine", "realize", "shape", "succeed", "transform", "win"], "adjectives": ["accomplished", "assertive", "confident", "decisive", "elite", "influential", "powerful", "prominent", "proven", "strong"]},
42
+ "Pink": {"verbs": ["arise", "aspire", "detail", "dream", "elevate", "enchant", "enrich", "envision", "exceed", "excel", "experience", "improve", "idealize", "imagine", "inspire", "perfect", "poise", "polish", "prepare", "refine", "uplift"], "adjectives": ["aesthetic", "charming", "classic", "dignified", "idealistic", "meticulous", "poised", "polished", "refined", "sophisticated", "elegant"]},
43
+ "Silver": {"verbs": ["activate", "campaign", "challenge", "commit", "confront", "dare", "defy", "disrupt", "drive", "excite", "face", "ignite", "incite", "influence", "inspire", "inspirit", "motivate", "move", "push", "rebel", "reimagine", "revolutionize", "rise", "spark", "stir", "fight", "free"], "adjectives": ["bold", "daring", "fearless", "independent", "non-conformist", "radical", "rebellious", "resolute", "unconventional", "valiant"]},
44
+ "Beige": {"verbs": ["dedicate", "humble", "collaborate", "empower", "inspire", "empassion", "transform"], "adjectives": ["dedicated", "collaborative", "consistent", "empowering", "enterprising", "humble", "inspiring", "passionate", "proud", "traditional", "transformative"]},
45
+ }
46
+
47
+ # Image styles for Gradio interface
48
+ style_list = [
49
+ {"name": "(No style)", "prompt": "{prompt}", "negative_prompt": ""},
50
+ {"name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"},
51
+ {"name": "Realistic", "prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured"},
52
+ {"name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast"},
53
+ {"name": "Digital Art", "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", "negative_prompt": "photo, photorealistic, realism, ugly"},
54
+ {"name": "Pixel art", "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"},
55
+ {"name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white"},
56
+ {"name": "3D Model", "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting"},
57
+ ]
58
+
59
+ # Create dictionary of styles
60
+ styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
61
+ STYLE_NAMES = list(styles.keys())
62
+ DEFAULT_STYLE_NAME = "(No style)"
63
+ NUM_IMAGES_PER_PROMPT = 1
64
+
65
+ # Function to apply style and modify prompt based on selected colors
66
+ def apply_style(style_name: str, positive: str, color_selections: dict) -> Tuple[str, str]:
67
+ p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
68
+ color_prompt = ""
69
+
70
+ # Aggregate verbs and adjectives from selected colors based on their ratios
71
+ for color, attributes in color_selections.items():
72
+ if attributes["selected"]:
73
+ verbs = random.sample(color_attributes[color]["verbs"], min(3, len(color_attributes[color]["verbs"])))
74
+ adjectives = random.sample(color_attributes[color]["adjectives"], min(3, len(color_attributes[color]["adjectives"])))
75
+ color_prompt += " ".join(verbs) + " " + " ".join(adjectives) + " "
76
+
77
+ # Form the final prompt
78
+ final_prompt = p.replace("{prompt}", positive + " " + color_prompt.strip())
79
+ return final_prompt, n
80
+
81
+ # Check if CUDA is available and set up the pipeline
82
+ if torch.cuda.is_available():
83
+ pipe = PixArtAlphaPipeline.from_pretrained(
84
+ "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
85
+ torch_dtype=torch.float16,
86
+ use_safetensors=True,
87
+ )
88
+ if os.getenv('CONSISTENCY_DECODER', False):
89
+ print("Using DALL-E 3 Consistency Decoder")
90
+ pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
91
+ if ENABLE_CPU_OFFLOAD:
92
+ pipe.enable_model_cpu_offload()
93
+ else:
94
+ pipe.to(device)
95
+ print("Loaded on Device!")
96
+ if USE_TORCH_COMPILE:
97
+ pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
98
+ print("Model Compiled!")
99
+
100
+ # Function to save image
101
+ def save_image(img):
102
+ unique_name = str(uuid.uuid4()) + ".png"
103
+ img.save(unique_name)
104
+ return unique_name
105
+
106
+ # Function to randomize seed if needed
107
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
108
+ if randomize_seed:
109
+ seed = random.randint(0, MAX_SEED)
110
+ return seed
111
+
112
+ # Main function to generate images based on user inputs
113
+ @spaces.GPU(duration=30)
114
+ def generate(
115
+ prompt: str,
116
+ negative_prompt: str = "",
117
+ style: str = DEFAULT_STYLE_NAME,
118
+ use_negative_prompt: bool = False,
119
+ seed: int = 0,
120
+ width: int = 1024,
121
+ height: int = 1024,
122
+ inference_steps: int = 4,
123
+ randomize_seed: bool = False,
124
+ use_resolution_binning: bool = True,
125
+ **color_ratios # Collect color ratios dynamically
126
+ ):
127
+ seed = int(randomize_seed_fn(seed, randomize_seed))
128
+ generator = torch.Generator().manual_seed(seed)
129
+
130
+ if not use_negative_prompt:
131
+ negative_prompt = None # type: ignore
132
+
133
+ # Process color selections and their ratios
134
+ color_selections = {color: {"selected": color_ratios.get(f"{color.lower()}_selected", False), "ratio": color_ratios.get(f"{color.lower()}_ratio", 0)} for color in color_attributes}
135
+
136
+ # Apply style and modify prompt based on color selections
137
+ prompt, negative_prompt = apply_style(style, prompt, color_selections)
138
+
139
+ # Generate images
140
+ try:
141
+ images = pipe(
142
+ prompt=prompt,
143
+ negative_prompt=negative_prompt,
144
+ width=width,
145
+ height=height,
146
+ guidance_scale=0,
147
+ num_inference_steps=inference_steps,
148
+ generator=generator,
149
+ num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
150
+ use_resolution_binning=use_resolution_binning,
151
+ output_type="pil",
152
+ ).images
153
+ except Exception as e:
154
+ print(f"Error during image generation: {e}")
155
+ return [], seed
156
+
157
+ image_paths = [save_image(img) for img in images]
158
+ print(image_paths)
159
+ return image_paths, seed
160
+
161
+ # Example prompts
162
+ examples = [
163
+ "A Monkey with a happy face in the Sahara desert.",
164
+ "Eiffel Tower was Made up of ICE.",
165
+ "Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
166
+ "A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
167
+ "A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
168
+ "an astronaut sitting in a diner, eating fries, cinematic, analog film",
169
+ ]
170
+
171
+ # Set up the Gradio interface
172
+ with gr.Blocks() as demo:
173
+ gr.Markdown(DESCRIPTION)
174
+ with gr.Row(equal_height=False):
175
+ with gr.Group():
176
+ with gr.Row():
177
+ prompt = gr.Text(
178
+ label="Prompt",
179
+ show_label=False,
180
+ max_lines=1,
181
+ placeholder="Enter your prompt",
182
+ container=False,
183
+ )
184
+ run_button = gr.Button("Run", scale=0)
185
+ result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
186
+
187
+ # Color selection and ratio configuration in the UI
188
+ with gr.Accordion("Color Influences", open=False):
189
+ with gr.Group():
190
+ color_checkboxes = {}
191
+ color_sliders = {}
192
+ for color in color_attributes:
193
+ with gr.Row():
194
+ color_checkboxes[color] = gr.Checkbox(label=f"{color} Selected", value=False)
195
+ color_sliders[color] = gr.Slider(label=f"{color} Influence Ratio", minimum=0, maximum=1, step=0.01, value=0.0)
196
+
197
+ with gr.Accordion("Advanced options", open=False):
198
+ with gr.Group():
199
+ with gr.Row():
200
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
201
+ negative_prompt = gr.Text(
202
+ label="Negative prompt",
203
+ max_lines=1,
204
+ placeholder="Enter a negative prompt",
205
+ visible=True,
206
+ )
207
+ style_selection = gr.Radio(
208
+ choices=STYLE_NAMES,
209
+ value=DEFAULT_STYLE_NAME,
210
+ label="Image Style",
211
+ show_label=True,
212
+ container=True,
213
+ interactive=True,
214
+ )
215
+ seed = gr.Slider(
216
+ label="Seed",
217
+ minimum=0,
218
+ maximum=MAX_SEED,
219
+ step=1,
220
+ value=0,
221
+ )
222
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
223
+ with gr.Row(visible=True):
224
+ width = gr.Slider(
225
+ label="Width",
226
+ minimum=256,
227
+ maximum=MAX_IMAGE_SIZE,
228
+ step=32,
229
+ value=1024,
230
+ )
231
+ height = gr.Slider(
232
+ label="Height",
233
+ minimum=256,
234
+ maximum=MAX_IMAGE_SIZE,
235
+ step=32,
236
+ value=1024,
237
+ )
238
+ with gr.Row():
239
+ inference_steps = gr.Slider(
240
+ label="Steps",
241
+ minimum=4,
242
+ maximum=20,
243
+ step=1,
244
+ value=4,
245
+ )
246
+
247
+ gr.Examples(
248
+ examples=examples,
249
+ inputs=prompt,
250
+ outputs=[result, seed],
251
+ fn=generate,
252
+ cache_examples=CACHE_EXAMPLES,
253
+ )
254
+
255
+ # Dynamic updates based on user interactions
256
+ use_negative_prompt.change(
257
+ fn=lambda x: gr.update(visible=x),
258
+ inputs=use_negative_prompt,
259
+ outputs=negative_prompt,
260
+ api_name=False,
261
+ )
262
+
263
+ gr.on(
264
+ triggers=[
265
+ prompt.submit,
266
+ negative_prompt.submit,
267
+ run_button.click,
268
+ ],
269
+ fn=generate,
270
+ inputs=[
271
+ prompt,
272
+ negative_prompt,
273
+ style_selection,
274
+ use_negative_prompt,
275
+ seed,
276
+ width,
277
+ height,
278
+ inference_steps,
279
+ randomize_seed,
280
+ *[color_checkboxes[color] for color in color_attributes],
281
+ *[color_sliders[color] for color in color_attributes]
282
+ ],
283
+ outputs=[result, seed],
284
+ api_name="run",
285
+ )
286
+
287
+ # Launch the Gradio app
288
+ if __name__ == "__main__":
289
+ demo.queue(max_size=20).launch()
290
+ # Uncomment the next line to launch the server with specific options
291
+ # demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=11900, debug=True)