File size: 9,548 Bytes
6c85d16 e3a5afc 6c85d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import asyncio
import base64
import json
import os
import pathlib
from typing import AsyncGenerator, Literal, List
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastrtc import AsyncStreamHandler, Stream, get_twilio_turn_credentials, wait_for_item
from pydantic import BaseModel
import uvicorn
# --- Document processing and RAG libraries ---
import PyPDF2
import docx
import faiss
from sentence_transformers import SentenceTransformer
from transformers import pipeline
# --- Speech processing libraries ---
import whisper
from gtts import gTTS
from pydub import AudioSegment
import io
# Load environment variables and define current directory
load_dotenv()
current_dir = pathlib.Path(__file__).parent
# ====================================================
# 1. Document Ingestion & RAG Pipeline Setup
# ====================================================
# Folder containing PDFs, Word docs, and text files (place this folder alongside app.py)
DOCS_FOLDER = current_dir / "docs"
def extract_text_from_pdf(file_path: pathlib.Path) -> str:
text = ""
with open(file_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
def extract_text_from_docx(file_path: pathlib.Path) -> str:
doc = docx.Document(file_path)
return "\n".join([para.text for para in doc.paragraphs])
def extract_text_from_txt(file_path: pathlib.Path) -> str:
with open(file_path, "r", encoding="utf-8") as f:
return f.read()
def load_documents(folder: pathlib.Path) -> List[str]:
documents = []
for file_path in folder.glob("*"):
if file_path.suffix.lower() == ".pdf":
documents.append(extract_text_from_pdf(file_path))
elif file_path.suffix.lower() in [".docx", ".doc"]:
documents.append(extract_text_from_docx(file_path))
elif file_path.suffix.lower() == ".txt":
documents.append(extract_text_from_txt(file_path))
return documents
def split_text(text: str, max_length: int = 500, overlap: int = 100) -> List[str]:
chunks = []
start = 0
while start < len(text):
end = start + max_length
chunks.append(text[start:end])
start += max_length - overlap
return chunks
# Load and process documents
documents = load_documents(DOCS_FOLDER)
all_chunks = []
for doc in documents:
all_chunks.extend(split_text(doc))
# Compute embeddings and build FAISS index
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
chunk_embeddings = embedding_model.encode(all_chunks)
embedding_dim = chunk_embeddings.shape[1]
index = faiss.IndexFlatL2(embedding_dim)
index.add(np.array(chunk_embeddings))
# Setup a text-generation pipeline (using GPT-2 here as an example)
generator = pipeline("text-generation", model="gpt2", max_length=256)
def retrieve_context(query: str, k: int = 5) -> List[str]:
query_embedding = embedding_model.encode([query])
distances, indices = index.search(np.array(query_embedding), k)
return [all_chunks[idx] for idx in indices[0] if idx < len(all_chunks)]
def generate_answer(query: str) -> str:
context_chunks = retrieve_context(query)
context = "\n".join(context_chunks)
prompt = (
f"You are a customer support agent. Use the following context to answer the question.\n\n"
f"Context:\n{context}\n\n"
f"Question: {query}\n\n"
f"Answer:"
)
response = generator(prompt, max_length=256, do_sample=True, temperature=0.7)
return response[0]["generated_text"]
# ====================================================
# 2. Speech-to-Text and Text-to-Speech Functions
# ====================================================
# Load Whisper model for speech-to-text
stt_model = whisper.load_model("base")
def speech_to_text(audio_array: np.ndarray, sample_rate: int = 16000) -> str:
# Convert int16 PCM to float32 normalized to [-1, 1]
audio_float = audio_array.astype(np.float32) / 32768.0
result = stt_model.transcribe(audio_float, fp16=False)
return result["text"]
def text_to_speech(text: str, lang="en", target_sample_rate: int = 24000) -> np.ndarray:
tts = gTTS(text, lang=lang)
mp3_fp = io.BytesIO()
tts.write_to_fp(mp3_fp)
mp3_fp.seek(0)
audio = AudioSegment.from_file(mp3_fp, format="mp3")
audio = audio.set_frame_rate(target_sample_rate).set_channels(1)
return np.array(audio.get_array_of_samples(), dtype=np.int16)
# ====================================================
# 3. RAGVoiceHandler: Integrating Voice & RAG
# ====================================================
class RAGVoiceHandler(AsyncStreamHandler):
def __init__(
self,
expected_layout: Literal["mono"] = "mono",
output_sample_rate: int = 24000,
output_frame_size: int = 480,
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=16000,
)
self.input_queue: asyncio.Queue = asyncio.Queue()
self.output_queue: asyncio.Queue = asyncio.Queue()
self.quit: asyncio.Event = asyncio.Event()
self.input_buffer = bytearray()
self.last_input_time = asyncio.get_event_loop().time()
def copy(self) -> "RAGVoiceHandler":
# Return a new instance with the same configuration
return RAGVoiceHandler(
expected_layout="mono",
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
async def stream(self) -> AsyncGenerator[bytes, None]:
# Continuously check for new audio; if a short silence occurs (timeout), process the buffered utterance.
while not self.quit.is_set():
try:
audio_data = await asyncio.wait_for(self.input_queue.get(), timeout=0.5)
self.input_buffer.extend(audio_data)
self.last_input_time = asyncio.get_event_loop().time()
except asyncio.TimeoutError:
if self.input_buffer:
# Process the buffered utterance
audio_array = np.frombuffer(self.input_buffer, dtype=np.int16)
self.input_buffer = bytearray()
query_text = speech_to_text(audio_array, sample_rate=self.input_sample_rate)
if query_text.strip():
print("Transcribed query:", query_text)
answer_text = generate_answer(query_text)
print("Generated answer:", answer_text)
tts_audio = text_to_speech(answer_text, target_sample_rate=self.output_sample_rate)
self.output_queue.put_nowait((self.output_sample_rate, tts_audio))
await asyncio.sleep(0.1)
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
# Each received frame is added as bytes to the input queue
sample_rate, audio_array = frame
audio_bytes = audio_array.tobytes()
await self.input_queue.put(audio_bytes)
async def emit(self) -> tuple[int, np.ndarray] | None:
return await wait_for_item(self.output_queue)
def shutdown(self) -> None:
self.quit.set()
# ====================================================
# 4. Twilio Voice Streaming Setup & FastAPI Endpoints
# ====================================================
# Create a Stream instance using our RAGVoiceHandler and Twilio TURN credentials
stream = Stream(
modality="audio",
mode="send-receive",
handler=RAGVoiceHandler(),
rtc_configuration=get_twilio_turn_credentials(),
concurrency_limit=5,
time_limit=90,
)
# Define a simple input hook (if needed by the client to initialize the call)
class InputData(BaseModel):
webrtc_id: str
app = FastAPI()
stream.mount(app)
@app.post("/input_hook")
async def input_hook(body: InputData):
stream.set_input(body.webrtc_id)
return {"status": "ok"}
# Endpoint to handle WebRTC offer from the client (Twilio voice calls)
@app.post("/webrtc/offer")
async def webrtc_offer(offer: dict):
# This uses fastrtc's built-in handling of the offer to set up the connection.
return await stream.handle_offer(offer)
# Serve your existing HTML file (which contains your Twilio/WebRTC voice UI)
@app.get("/")
async def index():
index_path = current_dir / "index.html"
html_content = index_path.read_text()
# If needed, replace any placeholders (for example, RTC configuration)
return HTMLResponse(content=html_content)
# ====================================================
# 5. Application Runner
# ====================================================
if __name__ == "__main__":
mode = os.getenv("MODE", "PHONE")
if mode == "UI":
# Optionally launch a text-based Gradio interface for testing the RAG backend
import gradio as gr
def gradio_chat(user_input):
return generate_answer(user_input)
iface = gr.Interface(fn=gradio_chat, inputs="text", outputs="text", title="Customer Support Chatbot")
iface.launch(server_port=7860)
elif mode == "PHONE":
# Run the FastAPI app so that callers can use the Twilio phone number to speak to the bot.
uvicorn.run(app, host="0.0.0.0", port=7860)
else:
uvicorn.run(app, host="0.0.0.0", port=7860)
|