File size: 9,069 Bytes
6c85d16
 
 
59c59d4
6c85d16
 
 
 
 
 
 
59c59d4
6c85d16
 
 
da658bc
27f1d38
 
6c85d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
befbdb6
 
6c85d16
 
 
 
 
befbdb6
6c85d16
 
 
 
 
 
 
 
 
 
 
b3a570b
00f15f8
 
 
 
 
 
 
6c85d16
 
 
 
 
c978ce1
6c85d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5afc
 
 
 
 
 
 
6c85d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f1d38
6c85d16
 
da658bc
 
 
 
 
 
 
 
 
 
27f1d38
6c85d16
 
 
 
27f1d38
6c85d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5124f8c
 
 
 
 
 
 
 
6c85d16
befbdb6
6c85d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import asyncio
import base64
import json
import os
import pathlib
from typing import AsyncGenerator, Literal, List

import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastrtc import AsyncStreamHandler, Stream, wait_for_item
from pydantic import BaseModel
import uvicorn

# --- Import get_space (optional) ---
from gradio.utils import get_space

# --- Document processing and RAG libraries ---
import PyPDF2
import docx
import faiss
from sentence_transformers import SentenceTransformer
from transformers import pipeline

# --- Speech processing libraries ---
import whisper
from gtts import gTTS
from pydub import AudioSegment
import io

# Load environment variables and define current directory
load_dotenv()
current_dir = pathlib.Path(__file__).parent

# ====================================================
# 1. Document Ingestion & RAG Pipeline Setup
# ====================================================

DOCS_FOLDER = current_dir / "docs"

def extract_text_from_pdf(file_path: pathlib.Path) -> str:
    text = ""
    with open(file_path, "rb") as f:
        reader = PyPDF2.PdfReader(f)
        for page in reader.pages:
            page_text = page.extract_text()
            if page_text:
                text += page_text + "\n"
    return text

def extract_text_from_docx(file_path: pathlib.Path) -> str:
    doc = docx.Document(file_path)
    return "\n".join([para.text for para in doc.paragraphs])

def extract_text_from_txt(file_path: pathlib.Path) -> str:
    with open(file_path, "r", encoding="utf-8") as f:
        return f.read()

def load_documents(folder: pathlib.Path) -> List[str]:
    documents = []
    for file_path in folder.glob("*"):
        if file_path.suffix.lower() == ".pdf":
            documents.append(extract_text_from_pdf(file_path))
        elif file_path.suffix.lower() in [".docx", ".doc"]:
            documents.append(extract_text_from_docx(file_path))
        elif file_path.suffix.lower() == ".txt":
            documents.append(extract_text_from_txt(file_path))
    return documents

def split_text(text: str, max_length: int = 500, overlap: int = 100) -> List[str]:
    chunks = []
    start = 0
    while start < len(text):
        end = start + max_length
        chunks.append(text[start:end])
        start += max_length - overlap
    return chunks

documents = load_documents(DOCS_FOLDER)
all_chunks = []
for doc in documents:
    all_chunks.extend(split_text(doc))

embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
chunk_embeddings = embedding_model.encode(all_chunks)
embedding_dim = chunk_embeddings.shape[1]
faiss_index = faiss.IndexFlatL2(embedding_dim)
faiss_index.add(np.array(chunk_embeddings))

generator = pipeline("text-generation", model="gpt2", max_length=256)

def retrieve_context(query: str, k: int = 5) -> List[str]:
    query_embedding = embedding_model.encode([query])
    distances, indices = faiss_index.search(np.array(query_embedding), k)
    return [all_chunks[idx] for idx in indices[0] if idx < len(all_chunks)]

def generate_answer(query: str) -> str:
    context_chunks = retrieve_context(query)
    context = "\n".join(context_chunks)
    prompt = (
        f"You are a customer support agent. Use the following context to answer the question.\n\n"
        f"Context:\n{context}\n\n"
        f"Question: {query}\n\n"
        f"Answer:"
    )
    response = generator(prompt, max_new_tokens=100, do_sample=True, temperature=0.7)
    generated_text = response[0]["generated_text"]
    # Return only the text after the "Answer:" delimiter
    if "Answer:" in generated_text:
        answer = generated_text.split("Answer:", 1)[1].strip()
    else:
        answer = generated_text.strip()
    return answer

# ====================================================
# 2. Speech-to-Text and Text-to-Speech Functions
# ====================================================

stt_model = whisper.load_model("base", device="cpu")

def speech_to_text(audio_array: np.ndarray, sample_rate: int = 16000) -> str:
    audio_float = audio_array.astype(np.float32) / 32768.0
    result = stt_model.transcribe(audio_float, fp16=False)
    return result["text"]

def text_to_speech(text: str, lang="en", target_sample_rate: int = 24000) -> np.ndarray:
    tts = gTTS(text, lang=lang)
    mp3_fp = io.BytesIO()
    tts.write_to_fp(mp3_fp)
    mp3_fp.seek(0)
    audio = AudioSegment.from_file(mp3_fp, format="mp3")
    audio = audio.set_frame_rate(target_sample_rate).set_channels(1)
    return np.array(audio.get_array_of_samples(), dtype=np.int16)

# ====================================================
# 3. RAGVoiceHandler: Integrating Voice & RAG
# ====================================================

class RAGVoiceHandler(AsyncStreamHandler):
    def __init__(
        self,
        expected_layout: Literal["mono"] = "mono",
        output_sample_rate: int = 24000,
        output_frame_size: int = 480,
    ) -> None:
        super().__init__(
            expected_layout,
            output_sample_rate,
            output_frame_size,
            input_sample_rate=16000,
        )
        self.input_queue: asyncio.Queue = asyncio.Queue()
        self.output_queue: asyncio.Queue = asyncio.Queue()
        self.quit: asyncio.Event = asyncio.Event()
        self.input_buffer = bytearray()
        self.last_input_time = asyncio.get_event_loop().time()

    def copy(self) -> "RAGVoiceHandler":
        return RAGVoiceHandler(
            expected_layout="mono",
            output_sample_rate=self.output_sample_rate,
            output_frame_size=self.output_frame_size,
        )

    async def stream(self) -> AsyncGenerator[bytes, None]:
        while not self.quit.is_set():
            try:
                audio_data = await asyncio.wait_for(self.input_queue.get(), timeout=0.5)
                self.input_buffer.extend(audio_data)
                self.last_input_time = asyncio.get_event_loop().time()
            except asyncio.TimeoutError:
                if self.input_buffer:
                    audio_array = np.frombuffer(self.input_buffer, dtype=np.int16)
                    self.input_buffer = bytearray()
                    query_text = speech_to_text(audio_array, sample_rate=self.input_sample_rate)
                    if query_text.strip():
                        print("Transcribed query:", query_text)
                        answer_text = generate_answer(query_text)
                        print("Generated answer:", answer_text)
                        tts_audio = text_to_speech(answer_text, target_sample_rate=self.output_sample_rate)
                        self.output_queue.put_nowait((self.output_sample_rate, tts_audio))
            await asyncio.sleep(0.1)

    async def receive(self, frame: tuple[int, np.ndarray]) -> None:
        sample_rate, audio_array = frame
        audio_bytes = audio_array.tobytes()
        await self.input_queue.put(audio_bytes)

    async def emit(self) -> tuple[int, np.ndarray] | None:
        return await wait_for_item(self.output_queue)

    def shutdown(self) -> None:
        self.quit.set()

# ====================================================
# 4. Voice Streaming Setup & FastAPI Endpoints
# ====================================================

rtc_config = {
    "iceServers": [
        {"urls": "stun:stun.l.google.com:19302"},
        {
            "urls": "turn:turn.anyfirewall.com:443?transport=tcp",
            "username": "webrtc",
            "credential": "webrtc"
        }
    ]
}

stream = Stream(
    modality="audio",
    mode="send-receive",
    handler=RAGVoiceHandler(),
    rtc_configuration=rtc_config,
    concurrency_limit=5,
    time_limit=90,
)

class InputData(BaseModel):
    webrtc_id: str

app = FastAPI()
stream.mount(app)

@app.post("/input_hook")
async def input_hook(body: InputData):
    stream.set_input(body.webrtc_id)
    return {"status": "ok"}

@app.post("/webrtc/offer")
async def webrtc_offer(offer: dict):
    return await stream.handle_offer(offer)

@app.post("/chat")
async def chat_endpoint(payload: dict):
    question = payload.get("question", "")
    if not question:
        return {"error": "No question provided"}
    answer = generate_answer(question)
    return {"answer": answer}

@app.get("/")
async def index_endpoint():
    index_path = current_dir / "index.html"
    html_content = index_path.read_text()
    return HTMLResponse(content=html_content)

# ====================================================
# 5. Application Runner
# ====================================================

if __name__ == "__main__":
    mode = os.getenv("MODE", "PHONE")
    if mode == "UI":
        import gradio as gr
        def gradio_chat(user_input):
            return generate_answer(user_input)
        iface = gr.Interface(fn=gradio_chat, inputs="text", outputs="text", title="Customer Support Chatbot")
        iface.launch(server_port=7860)
    elif mode == "PHONE":
        uvicorn.run(app, host="0.0.0.0", port=7860)
    else:
        uvicorn.run(app, host="0.0.0.0", port=7860)