Spaces:
Sleeping
Sleeping
File size: 1,504 Bytes
ab59728 ff3c600 ab59728 ff3c600 ef1521b ff3c600 ab59728 ff3c600 aa5d057 ff3c600 ab59728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import pipeline
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# def predict(input_img):
# predictions = pipeline(input_img)
# return input_img, {p["label"]: p["score"] for p in predictions}
from typing import List
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("juierror/text-to-sql-with-table-schema")
model = AutoModelForSeq2SeqLM.from_pretrained("juierror/text-to-sql-with-table-schema")
def prepare_input(question: str, table: List[str]):
table_prefix = "table:"
question_prefix = "question:"
join_table = ",".join(table)
inputs = f"{question_prefix} {question} {table_prefix} {join_table}"
input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids
return input_ids
def inference(question: str, table: str) -> str:
cols = table.split(",")
input_data = prepare_input(question=question, table=cols)
input_data = input_data.to(model.device)
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700)
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
return result
# print(inference(question="get people name with age equal 25", table=["id", "name", "age"]))
gradio_app = gr.Interface(
inference,
inputs=["textbox", "textbox"],
outputs="label",
title="Text To SQL",
)
if __name__ == "__main__":
gradio_app.launch() |