scutcyr's picture
Create app.py
7646d66
raw
history blame
3.66 kB
import os
# install torch and tf
os.system('pip install transformers SentencePiece')
os.system('pip install torch')
# pip install streamlit-chat
os.system('pip install streamlit-chat')
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer
import torch
import streamlit as st
from streamlit_chat import message
# 下载模型
tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v1")
model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v1")
# 修改colab笔记本设置为gpu,推理更快
device = torch.device('cpu')
model.to(device)
print('Model Load done!')
def preprocess(text):
text = text.replace("\n", "\\n").replace("\t", "\\t")
return text
def postprocess(text):
return text.replace("\\n", "\n").replace("\\t", "\t")
def answer(history, sample=True, top_p=1, temperature=0.7):
'''sample:是否抽样。生成任务,可以设置为True;
top_p:0-1之间,生成的内容越多样
max_new_tokens=512 lost...'''
preprocess_history = []
for i in range(len(history)):
preprocess_history[i] = preprocess(text)
#text = preprocess(text)
#print('用户: '+text)
encoding = tokenizer(text=preprocess_history, truncation=True, padding=True, max_length=768, return_tensors="pt").to(device)
if not sample:
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, num_beams=1, length_penalty=0.6)
else:
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=3)
out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
print('小元: '+postprocess(out_text[0]))
return postprocess(out_text[0])
st.set_page_config(
page_title="Chinese ChatBot - Demo",
page_icon=":robot:"
)
st.header("Chinese ChatBot - Demo")
st.markdown("[Github](https://github.com/scutcyr)")
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
def query(history):
inputs = tokenizer.dialogue_encode(
history, add_start_token_as_response=True, return_tensors=True, is_split_into_words=False
)
inputs["input_ids"] = inputs["input_ids"].astype("int64")
ids, scores = model.generate(
input_ids=inputs["input_ids"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
attention_mask=inputs["attention_mask"],
max_length=64,
min_length=1,
decode_strategy="sampling",
temperature=1.0,
top_k=5,
top_p=1.0,
num_beams=0,
length_penalty=1.0,
early_stopping=False,
num_return_sequences=20,
)
max_dec_len = 64
num_return_sequences = 20
bot_response = select_response(
ids, scores, tokenizer, max_dec_len, num_return_sequences, keep_space=False
)[0]
return bot_response
def get_text():
input_text = st.text_input("用户: ","你好!", key="input")
return input_text
history = []
user_input = get_text()
history.append(user_input)
if user_input:
output = answer(history)
st.session_state.past.append(user_input)
st.session_state.generated.append(output)
history.append(output)
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])-1, -1, -1):
message(st.session_state["generated"][i], key=str(i))
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')