Spaces:
Running
on
L4
Running
on
L4
add global try.
Browse files
app.py
CHANGED
@@ -103,98 +103,101 @@ os.makedirs('output', exist_ok=True)
|
|
103 |
|
104 |
def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
|
105 |
"""Run a single prediction on the model"""
|
106 |
-
#
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
bg_upsampler = upsampler if background_enhance else None
|
123 |
-
face_upsampler = upsampler if face_upsample else None
|
124 |
-
|
125 |
-
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
126 |
-
|
127 |
-
if has_aligned:
|
128 |
-
# the input faces are already cropped and aligned
|
129 |
-
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
130 |
-
face_helper.is_gray = is_gray(img, threshold=5)
|
131 |
-
if face_helper.is_gray:
|
132 |
-
print('Grayscale input: True')
|
133 |
-
face_helper.cropped_faces = [img]
|
134 |
-
else:
|
135 |
-
face_helper.read_image(img)
|
136 |
-
# get face landmarks for each face
|
137 |
-
num_det_faces = face_helper.get_face_landmarks_5(
|
138 |
-
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
139 |
-
)
|
140 |
-
print(f"\tdetect {num_det_faces} faces")
|
141 |
-
# align and warp each face
|
142 |
-
face_helper.align_warp_face()
|
143 |
-
|
144 |
-
# face restoration for each cropped face
|
145 |
-
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
146 |
-
# prepare data
|
147 |
-
cropped_face_t = img2tensor(
|
148 |
-
cropped_face / 255.0, bgr2rgb=True, float32=True
|
149 |
)
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
print(f"\tFailed inference for CodeFormer: {error}")
|
163 |
-
restored_face = tensor2img(
|
164 |
-
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
|
165 |
-
)
|
166 |
-
|
167 |
-
restored_face = restored_face.astype("uint8")
|
168 |
-
face_helper.add_restored_face(restored_face)
|
169 |
-
|
170 |
-
# paste_back
|
171 |
-
if not has_aligned:
|
172 |
-
# upsample the background
|
173 |
-
if bg_upsampler is not None:
|
174 |
-
# Now only support RealESRGAN for upsampling background
|
175 |
-
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
176 |
else:
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
restored_img = face_helper.paste_faces_to_input_image(
|
182 |
-
upsample_img=bg_img,
|
183 |
-
draw_box=draw_box,
|
184 |
-
face_upsampler=face_upsampler,
|
185 |
)
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
)
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
|
200 |
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
|
@@ -230,7 +233,7 @@ Redistribution and use for non-commercial purposes should follow this license.
|
|
230 |
|
231 |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
232 |
|
233 |
-
![visitors](https://visitor-badge.
|
234 |
"""
|
235 |
|
236 |
demo = gr.Interface(
|
|
|
103 |
|
104 |
def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
|
105 |
"""Run a single prediction on the model"""
|
106 |
+
try: # global try
|
107 |
+
# take the default setting for the demo
|
108 |
+
has_aligned = False
|
109 |
+
only_center_face = False
|
110 |
+
draw_box = False
|
111 |
+
detection_model = "retinaface_resnet50"
|
112 |
+
|
113 |
+
upscale = int(upscale) # covert type to int
|
114 |
+
face_helper = FaceRestoreHelper(
|
115 |
+
upscale,
|
116 |
+
face_size=512,
|
117 |
+
crop_ratio=(1, 1),
|
118 |
+
det_model=detection_model,
|
119 |
+
save_ext="png",
|
120 |
+
use_parse=True,
|
121 |
+
device=device,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
+
bg_upsampler = upsampler if background_enhance else None
|
124 |
+
face_upsampler = upsampler if face_upsample else None
|
125 |
+
|
126 |
+
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
127 |
+
|
128 |
+
if has_aligned:
|
129 |
+
# the input faces are already cropped and aligned
|
130 |
+
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
131 |
+
face_helper.is_gray = is_gray(img, threshold=5)
|
132 |
+
if face_helper.is_gray:
|
133 |
+
print('Grayscale input: True')
|
134 |
+
face_helper.cropped_faces = [img]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
else:
|
136 |
+
face_helper.read_image(img)
|
137 |
+
# get face landmarks for each face
|
138 |
+
num_det_faces = face_helper.get_face_landmarks_5(
|
139 |
+
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
+
print(f"\tdetect {num_det_faces} faces")
|
142 |
+
# align and warp each face
|
143 |
+
face_helper.align_warp_face()
|
144 |
+
|
145 |
+
# face restoration for each cropped face
|
146 |
+
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
147 |
+
# prepare data
|
148 |
+
cropped_face_t = img2tensor(
|
149 |
+
cropped_face / 255.0, bgr2rgb=True, float32=True
|
150 |
)
|
151 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
152 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
153 |
+
|
154 |
+
try:
|
155 |
+
with torch.no_grad():
|
156 |
+
output = codeformer_net(
|
157 |
+
cropped_face_t, w=codeformer_fidelity, adain=True
|
158 |
+
)[0]
|
159 |
+
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
160 |
+
del output
|
161 |
+
torch.cuda.empty_cache()
|
162 |
+
except Exception as error:
|
163 |
+
print(f"\tFailed inference for CodeFormer: {error}")
|
164 |
+
restored_face = tensor2img(
|
165 |
+
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
|
166 |
+
)
|
167 |
+
|
168 |
+
restored_face = restored_face.astype("uint8")
|
169 |
+
face_helper.add_restored_face(restored_face)
|
170 |
+
|
171 |
+
# paste_back
|
172 |
+
if not has_aligned:
|
173 |
+
# upsample the background
|
174 |
+
if bg_upsampler is not None:
|
175 |
+
# Now only support RealESRGAN for upsampling background
|
176 |
+
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
177 |
+
else:
|
178 |
+
bg_img = None
|
179 |
+
face_helper.get_inverse_affine(None)
|
180 |
+
# paste each restored face to the input image
|
181 |
+
if face_upsample and face_upsampler is not None:
|
182 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
183 |
+
upsample_img=bg_img,
|
184 |
+
draw_box=draw_box,
|
185 |
+
face_upsampler=face_upsampler,
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
189 |
+
upsample_img=bg_img, draw_box=draw_box
|
190 |
+
)
|
191 |
+
|
192 |
+
# save restored img
|
193 |
+
save_path = f'output/out.png'
|
194 |
+
imwrite(restored_img, str(save_path))
|
195 |
+
|
196 |
+
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
|
197 |
+
return restored_img, save_path
|
198 |
+
except Exception as error:
|
199 |
+
print('global exception', error)
|
200 |
+
return None, None
|
201 |
|
202 |
|
203 |
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
|
|
|
233 |
|
234 |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
235 |
|
236 |
+
![visitors](https://visitor-badge.laobi.icu/badge?page_id=sczhou/CodeFormer)
|
237 |
"""
|
238 |
|
239 |
demo = gr.Interface(
|