Spaces:
Runtime error
Runtime error
Commit
•
a1b8e4d
1
Parent(s):
8772583
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#@title Prepare the Concepts Library to be used
|
2 |
+
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
import gradio as gr
|
6 |
+
import wget
|
7 |
+
import torch
|
8 |
+
from torch import autocast
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
from huggingface_hub import HfApi
|
11 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
12 |
+
from tqdm.notebook import tqdm
|
13 |
+
|
14 |
+
api = HfApi()
|
15 |
+
models_list = api.list_models(author="sd-concepts-library")
|
16 |
+
models = []
|
17 |
+
|
18 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True, revision="fp16", torch_dtype=torch.float16).to("cuda")
|
19 |
+
|
20 |
+
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
|
21 |
+
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
|
22 |
+
|
23 |
+
# separate token and the embeds
|
24 |
+
trained_token = list(loaded_learned_embeds.keys())[0]
|
25 |
+
embeds = loaded_learned_embeds[trained_token]
|
26 |
+
|
27 |
+
# cast to dtype of text_encoder
|
28 |
+
dtype = text_encoder.get_input_embeddings().weight.dtype
|
29 |
+
embeds.to(dtype)
|
30 |
+
|
31 |
+
# add the token in tokenizer
|
32 |
+
token = token if token is not None else trained_token
|
33 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
34 |
+
i = 1
|
35 |
+
while(num_added_tokens == 0):
|
36 |
+
print(f"The tokenizer already contains the token {token}.")
|
37 |
+
token = f"{token[:-1]}-{i}>"
|
38 |
+
print(f"Attempting to add the token {token}.")
|
39 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
40 |
+
i+=1
|
41 |
+
|
42 |
+
# resize the token embeddings
|
43 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
44 |
+
|
45 |
+
# get the id for the token and assign the embeds
|
46 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
47 |
+
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
|
48 |
+
return token
|
49 |
+
|
50 |
+
print("Setting up the public library")
|
51 |
+
for model in tqdm(models_list):
|
52 |
+
model_content = {}
|
53 |
+
model_id = model.modelId
|
54 |
+
model_content["id"] = model_id
|
55 |
+
embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin"
|
56 |
+
os.makedirs(model_id,exist_ok = True)
|
57 |
+
if not os.path.exists(f"{model_id}/learned_embeds.bin"):
|
58 |
+
try:
|
59 |
+
wget.download(embeds_url, out=model_id)
|
60 |
+
except:
|
61 |
+
continue
|
62 |
+
token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt"
|
63 |
+
response = requests.get(token_identifier)
|
64 |
+
token_name = response.text
|
65 |
+
|
66 |
+
concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt"
|
67 |
+
response = requests.get(concept_type)
|
68 |
+
concept_name = response.text
|
69 |
+
model_content["concept_type"] = concept_name
|
70 |
+
images = []
|
71 |
+
for i in range(4):
|
72 |
+
url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg"
|
73 |
+
image_download = requests.get(url)
|
74 |
+
url_code = image_download.status_code
|
75 |
+
if(url_code == 200):
|
76 |
+
file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image
|
77 |
+
file.write(image_download.content) ## Saves file content
|
78 |
+
file.close()
|
79 |
+
images.append(f"{model_id}/{i}.jpeg")
|
80 |
+
model_content["images"] = images
|
81 |
+
|
82 |
+
learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name)
|
83 |
+
model_content["token"] = learned_token
|
84 |
+
models.append(model_content)
|
85 |
+
|
86 |
+
#@title Run the app to navigate around [the Library](https://huggingface.co/sd-concepts-library)
|
87 |
+
#@markdown Click the `Running on public URL:` result to run the Gradio app
|
88 |
+
|
89 |
+
SELECT_LABEL = "Select concept"
|
90 |
+
|
91 |
+
def title_block(title, id):
|
92 |
+
return gr.Markdown(f"### [`{title}`](https://huggingface.co/{id})")
|
93 |
+
|
94 |
+
def image_block(image_list, concept_type):
|
95 |
+
return gr.Gallery(
|
96 |
+
label=concept_type, value=image_list, elem_id="gallery"
|
97 |
+
).style(grid=[2], height="auto")
|
98 |
+
|
99 |
+
def checkbox_block():
|
100 |
+
checkbox = gr.Checkbox(label=SELECT_LABEL).style(container=False)
|
101 |
+
return checkbox
|
102 |
+
|
103 |
+
def infer(text):
|
104 |
+
with autocast("cuda"):
|
105 |
+
images_list = pipe(
|
106 |
+
[text]*2,
|
107 |
+
num_inference_steps=50,
|
108 |
+
guidance_scale=7.5
|
109 |
+
)
|
110 |
+
output_images = []
|
111 |
+
for i, image in enumerate(images_list["sample"]):
|
112 |
+
output_images.append(image)
|
113 |
+
return output_images
|
114 |
+
|
115 |
+
css = '''
|
116 |
+
.gradio-container {font-family: 'IBM Plex Sans', sans-serif}
|
117 |
+
#top_title{margin-bottom: .5em}
|
118 |
+
#top_title h2{margin-bottom: 0; text-align: center}
|
119 |
+
#main_row{flex-wrap: wrap; gap: 1em; max-height: calc(100vh - 16em); overflow-y: scroll; flex-direction: row}
|
120 |
+
@media (min-width: 768px){#main_row > div{flex: 1 1 32%; margin-left: 0 !important}}
|
121 |
+
.gr-prose code::before, .gr-prose code::after {content: "" !important}
|
122 |
+
::-webkit-scrollbar {width: 10px}
|
123 |
+
::-webkit-scrollbar-track {background: #f1f1f1}
|
124 |
+
::-webkit-scrollbar-thumb {background: #888}
|
125 |
+
::-webkit-scrollbar-thumb:hover {background: #555}
|
126 |
+
.gr-button {white-space: nowrap}
|
127 |
+
.gr-button:focus {
|
128 |
+
border-color: rgb(147 197 253 / var(--tw-border-opacity));
|
129 |
+
outline: none;
|
130 |
+
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
|
131 |
+
--tw-border-opacity: 1;
|
132 |
+
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
|
133 |
+
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
|
134 |
+
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
|
135 |
+
--tw-ring-opacity: .5;
|
136 |
+
}
|
137 |
+
#prompt_input{flex: 1 3 auto}
|
138 |
+
#prompt_area{margin-bottom: .75em}
|
139 |
+
#prompt_area > div:first-child{flex: 1 3 auto}
|
140 |
+
'''
|
141 |
+
examples = ["a <cat-toy> in <madhubani-art> style", "a mecha robot in <line-art> style", "a piano being played by <bonzi>"]
|
142 |
+
with gr.Blocks(css=css) as demo:
|
143 |
+
state = gr.Variable({
|
144 |
+
'selected': -1
|
145 |
+
})
|
146 |
+
state = {}
|
147 |
+
def update_state(i):
|
148 |
+
global checkbox_states
|
149 |
+
if(checkbox_states[i]):
|
150 |
+
checkbox_states[i] = False
|
151 |
+
state[i] = False
|
152 |
+
else:
|
153 |
+
state[i] = True
|
154 |
+
checkbox_states[i] = True
|
155 |
+
gr.HTML('''
|
156 |
+
<div style="text-align: center; max-width: 720px; margin: 0 auto;">
|
157 |
+
<div
|
158 |
+
style="
|
159 |
+
display: inline-flex;
|
160 |
+
align-items: center;
|
161 |
+
gap: 0.8rem;
|
162 |
+
font-size: 1.75rem;
|
163 |
+
"
|
164 |
+
>
|
165 |
+
<svg
|
166 |
+
width="0.65em"
|
167 |
+
height="0.65em"
|
168 |
+
viewBox="0 0 115 115"
|
169 |
+
fill="none"
|
170 |
+
xmlns="http://www.w3.org/2000/svg"
|
171 |
+
>
|
172 |
+
<rect width="23" height="23" fill="white"></rect>
|
173 |
+
<rect y="69" width="23" height="23" fill="white"></rect>
|
174 |
+
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
|
175 |
+
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
176 |
+
<rect x="46" width="23" height="23" fill="white"></rect>
|
177 |
+
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
|
178 |
+
<rect x="69" width="23" height="23" fill="black"></rect>
|
179 |
+
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
|
180 |
+
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
|
181 |
+
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
182 |
+
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
|
183 |
+
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
|
184 |
+
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
185 |
+
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
|
186 |
+
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
187 |
+
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
|
188 |
+
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
|
189 |
+
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
|
190 |
+
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
191 |
+
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
|
192 |
+
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
|
193 |
+
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
|
194 |
+
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
|
195 |
+
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
196 |
+
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
|
197 |
+
</svg>
|
198 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
199 |
+
Stable Diffusion Conceptualizer
|
200 |
+
</h1>
|
201 |
+
</div>
|
202 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
203 |
+
Navigate through community created concepts and styles via Stable Diffusion Textual Inversion and pick yours for inference.
|
204 |
+
To train your own concepts and contribute to the library <a style="text-decoration: underline" href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb">check out this notebook</a>.
|
205 |
+
</p>
|
206 |
+
</div>
|
207 |
+
''')
|
208 |
+
with gr.Row():
|
209 |
+
with gr.Column():
|
210 |
+
gr.Markdown('''
|
211 |
+
### Textual-Inversion trained [concepts library](https://huggingface.co/sd-concepts-library) navigator
|
212 |
+
''')
|
213 |
+
with gr.Row(elem_id="main_row"):
|
214 |
+
image_blocks = []
|
215 |
+
for i, model in enumerate(models):
|
216 |
+
with gr.Box().style(border=None):
|
217 |
+
title_block(model["token"], model["id"])
|
218 |
+
image_blocks.append(image_block(model["images"], model["concept_type"]))
|
219 |
+
with gr.Box():
|
220 |
+
with gr.Row(elem_id="prompt_area").style(mobile_collapse=False, equal_height=True):
|
221 |
+
text = gr.Textbox(
|
222 |
+
label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input"
|
223 |
+
).style(
|
224 |
+
border=(True, False, True, True),
|
225 |
+
rounded=(True, False, False, True),
|
226 |
+
container=False
|
227 |
+
)
|
228 |
+
btn = gr.Button("Run",elem_id="run_btn").style(
|
229 |
+
margin=False,
|
230 |
+
rounded=(False, True, True, False)
|
231 |
+
)
|
232 |
+
with gr.Row().style():
|
233 |
+
infer_outputs = gr.Gallery(show_label=False).style(grid=[2], height="512px")
|
234 |
+
with gr.Row():
|
235 |
+
gr.HTML("<p style=\"font-size: 85%;margin-top: .75em\">Prompting may not work as you are used to; <code>objects</code> may need the concept added at the end.</p>")
|
236 |
+
with gr.Row():
|
237 |
+
gr.Examples(examples=examples, fn=infer, inputs=[text], outputs=infer_outputs, cache_examples=False)
|
238 |
+
checkbox_states = {}
|
239 |
+
inputs = [text]
|
240 |
+
btn.click(
|
241 |
+
infer,
|
242 |
+
inputs=inputs,
|
243 |
+
outputs=infer_outputs
|
244 |
+
)
|
245 |
+
demo.launch(inline=False, debug=True)
|