Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
description = "Sentiment Analysis :) && :("
|
6 |
+
title = "SentBERT"
|
7 |
+
examples = [["That ice cream was really bad"], ["Great to meet you!"], ["Hey, there's a snake there"]]
|
8 |
+
|
9 |
+
class2interpret = {
|
10 |
+
0: 'Positive/Neutral',
|
11 |
+
1: 'Negative'
|
12 |
+
}
|
13 |
+
|
14 |
+
def classify(example):
|
15 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
16 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
17 |
+
inputs = tokenizer(example, return_tensors="pt")
|
18 |
+
with torch.no_grad():
|
19 |
+
logits = model(**inputs).logits
|
20 |
+
|
21 |
+
probs = torch.nn.Softmax(dim=1)(logits).tolist()[0]
|
22 |
+
|
23 |
+
return {class2interpret[0]: probs[0], class2interpret[1]: probs[1]}, {class2interpret[0]: probs[0], class2interpret[1]: probs[1]}
|
24 |
+
|
25 |
+
interface = gr.Interface(fn=classify, inputs='text', outputs=['label', 'json'], examples=examples, description=description, title=title)
|
26 |
+
interface.launch()
|