import re import os import datetime from typing import Type, Dict, List, Tuple import time from itertools import compress import pandas as pd import google.generativeai as ai import gradio as gr from gradio import Progress import boto3 import json from nltk.corpus import stopwords from nltk.tokenize import RegexpTokenizer from nltk.stem import WordNetLemmatizer from keybert import KeyBERT # For Name Entity Recognition model #from span_marker import SpanMarkerModel # Not currently used # For BM25 retrieval import bm25s import Stemmer # Model packages import torch.cuda from threading import Thread from transformers import pipeline, TextIteratorStreamer # Langchain functions from langchain.prompts import PromptTemplate from langchain_community.vectorstores import FAISS from langchain_community.retrievers import SVMRetriever from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.docstore.document import Document from chatfuncs.prompts import instruction_prompt_template_alpaca, instruction_prompt_mistral_orca, instruction_prompt_phi3, instruction_prompt_llama3, instruction_prompt_qwen, instruction_prompt_template_orca, instruction_prompt_gemma, instruction_prompt_template_gemini_aws from chatfuncs.model_load import temperature, max_new_tokens, sample, repetition_penalty, top_p, top_k, torch_device, CtransGenGenerationConfig, max_tokens from chatfuncs.config import GEMINI_API_KEY, AWS_DEFAULT_REGION, LARGE_MODEL_NAME, SMALL_MODEL_NAME, RUN_AWS_FUNCTIONS, FEEDBACK_LOGS_FOLDER model_object = [] # Define empty list for model functions to run tokenizer = [] # Define empty list for model functions to run # ResponseObject class for AWS Bedrock calls class ResponseObject: def __init__(self, text, usage_metadata): self.text = text self.usage_metadata = usage_metadata if RUN_AWS_FUNCTIONS=="1": bedrock_runtime = boto3.client('bedrock-runtime', region_name=AWS_DEFAULT_REGION) else: bedrock_runtime = "" torch.cuda.empty_cache() PandasDataFrame = Type[pd.DataFrame] embeddings = None # global variable setup embeddings_model = None # global variable setup vectorstore = None # global variable setup model_type = None # global variable setup max_memory_length = 0 # How long should the memory of the conversation last? source_texts = "" # Define dummy source text (full text) just to enable highlight function to load ## Highlight text constants hlt_chunk_size = 12 hlt_strat = [" ", ". ", "! ", "? ", ": ", "\n\n", "\n", ", "] hlt_overlap = 4 ## Initialise NER model ## ner_model = []#SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd") # Not currently used ## Initialise keyword model ## # Used to pull out keywords from chat history to add to user queries behind the scenes kw_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2") # Vectorstore funcs # def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings): # print(f"> Total split documents: {len(docs_out)}") # vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings) # ''' # #with open("vectorstore.pkl", "wb") as f: # #pickle.dump(vectorstore, f) # ''' # #if Path(save_to).exists(): # # vectorstore_func.save_local(folder_path=save_to) # #else: # # os.mkdir(save_to) # # vectorstore_func.save_local(folder_path=save_to) # global vectorstore # vectorstore = vectorstore_func # out_message = "Document processing complete" # #print(out_message) # #print(f"> Saved to: {save_to}") # return out_message # def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings_model=embeddings_model): # print(f"> Total split documents: {len(docs_out)}") # print(docs_out) # vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings_model) # vectorstore = vectorstore_func # out_message = "Document processing complete" # return out_message, vectorstore_func # Prompt functions def base_prompt_templates(model_type:str = SMALL_MODEL_NAME): #EXAMPLE_PROMPT = PromptTemplate( # template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n", # input_variables=["page_content", "source"], #) CONTENT_PROMPT = PromptTemplate( template="{page_content}\n\n",#\n\nSOURCE: {source}\n\n", input_variables=["page_content"] ) # The main prompt: if model_type == SMALL_MODEL_NAME: INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_gemma, input_variables=['question', 'summaries']) elif model_type == LARGE_MODEL_NAME: INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_phi3, input_variables=['question', 'summaries']) else: INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_gemini_aws, input_variables=['question', 'summaries']) return INSTRUCTION_PROMPT, CONTENT_PROMPT def write_out_metadata_as_string(metadata_in:str): metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata'] return metadata_string def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt:str, content_prompt:str, extracted_memory:list, vectorstore:object, embeddings:object, relevant_flag:bool = True, out_passages:int = 2, total_output_passage_chunks_size:int=5): # , question = inputs["question"] chat_history = inputs["chat_history"] if relevant_flag == True: new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords, docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 25, out_passages = out_passages, vec_score_cut_off = 0.85, vec_weight = 1, bm25_weight = 1, svm_weight = 1) else: new_question_kworded = question doc_df = pd.DataFrame() docs_keep_as_doc = [] docs_keep_out = [] if (not docs_keep_as_doc) | (doc_df.empty): sorry_prompt = """Say 'Sorry, there is no relevant information to answer this question.'""" return sorry_prompt, "No relevant sources found.", new_question_kworded # Expand the found passages to the neighbouring context if 'meta_url' in doc_df.columns: file_type = determine_file_type(doc_df['meta_url'][0]) else: file_type = determine_file_type(doc_df['source'][0]) # Only expand passages if not tabular data if (file_type != ".csv") & (file_type != ".xlsx"): docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=total_output_passage_chunks_size) # Build up sources content to add to user display doc_df['meta_clean'] = write_out_metadata_as_string(doc_df["metadata"]) # [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in doc_df['metadata']] # Remove meta text from the page content if it already exists there doc_df['page_content_no_meta'] = doc_df.apply(lambda row: row['page_content'].replace(row['meta_clean'] + ". ", ""), axis=1) doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".

" + doc_df['page_content_no_meta'].astype(str) #modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])] modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['content_meta'])] docs_content_string = '

'.join(modified_page_content) sources_docs_content_string = '

'.join(doc_df['content_meta'])#.replace(" "," ")#.strip() instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string) return instruction_prompt_out, sources_docs_content_string, new_question_kworded def create_full_prompt(user_input:str, history:list[dict], extracted_memory:str, vectorstore:object, embeddings:object, model_type:str, out_passages:list[str], api_key:str="", relevant_flag:bool=True): if "gemini" in model_type and not GEMINI_API_KEY and not api_key: raise Exception("Gemini model selected but no API key found. Please enter an API key on the Advanced settings page.") #if chain_agent is None: # history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)")) # return history, history, "", "" print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") history = history or [] # Create instruction prompt instruction_prompt, content_prompt = base_prompt_templates(model_type=model_type) if not user_input.strip(): user_input = "No user input found" relevant_flag = False else: relevant_flag = True instruction_prompt_out, docs_content_string, new_question_kworded =\ generate_expanded_prompt({"question": user_input, "chat_history": history}, #vectorstore, instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, relevant_flag, out_passages) history.append({"metadata":None, "options":None, "role": 'user', "content": user_input}) return history, docs_content_string, instruction_prompt_out, relevant_flag def call_aws_claude(prompt: str, system_prompt: str, temperature: float, max_tokens: int, model_choice: str) -> ResponseObject: """ This function sends a request to AWS Claude with the following parameters: - prompt: The user's input prompt to be processed by the model. - system_prompt: A system-defined prompt that provides context or instructions for the model. - temperature: A value that controls the randomness of the model's output, with higher values resulting in more diverse responses. - max_tokens: The maximum number of tokens (words or characters) in the model's response. - model_choice: The specific model to use for processing the request. The function constructs the request configuration, invokes the model, extracts the response text, and returns a ResponseObject containing the text and metadata. """ prompt_config = { "anthropic_version": "bedrock-2023-05-31", "max_tokens": max_tokens, "top_p": 0.999, "temperature":temperature, "system": system_prompt, "messages": [ { "role": "user", "content": [ {"type": "text", "text": prompt}, ], } ], } print("prompt_config:", prompt_config) body = json.dumps(prompt_config) modelId = model_choice accept = "application/json" contentType = "application/json" request = bedrock_runtime.invoke_model( body=body, modelId=modelId, accept=accept, contentType=contentType ) # Extract text from request response_body = json.loads(request.get("body").read()) text = response_body.get("content")[0].get("text") response = ResponseObject( text=text, usage_metadata=request['ResponseMetadata'] ) # Now you can access both the text and metadata #print("Text:", response.text) print("Metadata:", response.usage_metadata) return response def construct_gemini_generative_model(in_api_key: str, temperature: float, model_choice: str, system_prompt: str, max_tokens: int) -> Tuple[object, dict]: """ Constructs a GenerativeModel for Gemini API calls. Parameters: - in_api_key (str): The API key for authentication. - temperature (float): The temperature parameter for the model, controlling the randomness of the output. - model_choice (str): The choice of model to use for generation. - system_prompt (str): The system prompt to guide the generation. - max_tokens (int): The maximum number of tokens to generate. Returns: - Tuple[object, dict]: A tuple containing the constructed GenerativeModel and its configuration. """ # Construct a GenerativeModel try: if in_api_key: #print("Getting API key from textbox") api_key = in_api_key ai.configure(api_key=api_key) elif "GOOGLE_API_KEY" in os.environ: #print("Searching for API key in environmental variables") api_key = os.environ["GOOGLE_API_KEY"] ai.configure(api_key=api_key) else: print("No API key foound") raise gr.Error("No API key found.") except Exception as e: print(e) config = ai.GenerationConfig(temperature=temperature, max_output_tokens=max_tokens) print("model_choice:", model_choice) #model = ai.GenerativeModel.from_cached_content(cached_content=cache, generation_config=config) model = ai.GenerativeModel(model_name=model_choice, system_instruction=system_prompt, generation_config=config) return model, config # Function to send a request and update history def send_request(prompt: str, conversation_history: List[dict], model: object, config: dict, model_choice: str, system_prompt: str, temperature: float, progress=Progress(track_tqdm=True)) -> Tuple[str, List[dict]]: """ This function sends a request to a language model with the given prompt, conversation history, model configuration, model choice, system prompt, and temperature. It constructs the full prompt by appending the new user prompt to the conversation history, generates a response from the model, and updates the conversation history with the new prompt and response. If the model choice is specific to AWS Claude, it calls the `call_aws_claude` function; otherwise, it uses the `model.generate_content` method. The function returns the response text and the updated conversation history. """ # Constructing the full prompt from the conversation history full_prompt = "Conversation history:\n" for entry in conversation_history: role = entry['role'].capitalize() # Assuming the history is stored with 'role' and 'content' message = ' '.join(entry['parts']) # Combining all parts of the message full_prompt += f"{role}: {message}\n" # Adding the new user prompt full_prompt += f"\nUser: {prompt}" # Print the full prompt for debugging purposes #print("full_prompt:", full_prompt) # Generate the model's response if "gemini" in model_choice: try: response = model.generate_content(contents=full_prompt, generation_config=config) except Exception as e: # If fails, try again after 10 seconds in case there is a throttle limit print(e) try: print("Calling Gemini model") out_message = "API limit hit - waiting 30 seconds to retry." print(out_message) progress(0.5, desc=out_message) time.sleep(30) response = model.generate_content(contents=full_prompt, generation_config=config) except Exception as e: print(e) return "", conversation_history elif "claude" in model_choice: try: print("Calling AWS Claude model") print("prompt:", prompt) print("system_prompt:", system_prompt) response = call_aws_claude(prompt, system_prompt, temperature, max_tokens, model_choice) except Exception as e: # If fails, try again after x seconds in case there is a throttle limit print(e) try: out_message = "API limit hit - waiting 30 seconds to retry." print(out_message) progress(0.5, desc=out_message) time.sleep(30) response = call_aws_claude(prompt, system_prompt, temperature, max_tokens, model_choice) except Exception as e: print(e) return "", conversation_history else: raise Exception("Model not found") # Update the conversation history with the new prompt and response conversation_history.append({"metadata":None, "options":None, "role": 'user', 'parts': [prompt]}) conversation_history.append({"metadata":None, "options":None, "role": "assistant", 'parts': [response.text]}) # Print the updated conversation history #print("conversation_history:", conversation_history) return response, conversation_history def process_requests(prompts: List[str], system_prompt_with_table: str, conversation_history: List[dict], whole_conversation: List[str], whole_conversation_metadata: List[str], model: object, config: dict, model_choice: str, temperature: float, batch_no:int = 1, master:bool = False) -> Tuple[List[ResponseObject], List[dict], List[str], List[str]]: """ Processes a list of prompts by sending them to the model, appending the responses to the conversation history, and updating the whole conversation and metadata. Args: prompts (List[str]): A list of prompts to be processed. system_prompt_with_table (str): The system prompt including a table. conversation_history (List[dict]): The history of the conversation. whole_conversation (List[str]): The complete conversation including prompts and responses. whole_conversation_metadata (List[str]): Metadata about the whole conversation. model (object): The model to use for processing the prompts. config (dict): Configuration for the model. model_choice (str): The choice of model to use. temperature (float): The temperature parameter for the model. batch_no (int): Batch number of the large language model request. master (bool): Is this request for the master table. Returns: Tuple[List[ResponseObject], List[dict], List[str], List[str]]: A tuple containing the list of responses, the updated conversation history, the updated whole conversation, and the updated whole conversation metadata. """ responses = [] #for prompt in prompts: response, conversation_history = send_request(prompts[0], conversation_history, model=model, config=config, model_choice=model_choice, system_prompt=system_prompt_with_table, temperature=temperature) print(response.text) #"Okay, I'm ready. What source are we discussing, and what's your question about it? Please provide as much context as possible so I can give you the best answer."] print(response.usage_metadata) responses.append(response) # Create conversation txt object whole_conversation.append(prompts[0]) whole_conversation.append(response.text) # Create conversation metadata if master == False: whole_conversation_metadata.append(f"Query batch {batch_no} prompt {len(responses)} metadata:") else: whole_conversation_metadata.append(f"Query summary metadata:") whole_conversation_metadata.append(str(response.usage_metadata)) return responses, conversation_history, whole_conversation, whole_conversation_metadata def produce_streaming_answer_chatbot( history:list, full_prompt:str, model_type:str, temperature:float=temperature, relevant_query_bool:bool=True, chat_history:list[dict]=[{"metadata":None, "options":None, "role": 'user', "content": ""}], in_api_key:str=GEMINI_API_KEY, max_new_tokens:int=max_new_tokens, sample:bool=sample, repetition_penalty:float=repetition_penalty, top_p:float=top_p, top_k:float=top_k, max_tokens:int=max_tokens ): #print("Model type is: ", model_type) #if not full_prompt.strip(): # if history is None: # history = [] # return history history = chat_history print("history at start of streaming function:", history) if relevant_query_bool == False: history.append({"metadata":None, "options":None, "role": "assistant", "content": 'No relevant query found. Please retry your question'}) yield history return if model_type == SMALL_MODEL_NAME: # Get the model and tokenizer, and tokenize the user text. model_inputs = tokenizer(text=full_prompt, return_tensors="pt", return_attention_mask=False).to(torch_device) # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=sample, repetition_penalty=repetition_penalty, top_p=top_p, temperature=temperature, top_k=top_k ) t = Thread(target=model_object.generate, kwargs=generate_kwargs) t.start() # Pull the generated text from the streamer, and update the model output. start = time.time() NUM_TOKENS=0 print('-'*4+'Start Generation'+'-'*4) history.append({"metadata":None, "options":None, "role": "assistant", "content": ""}) for new_text in streamer: try: if new_text is None: new_text = "" history[-1]['content'] += new_text NUM_TOKENS += 1 yield history except Exception as e: print(f"Error during text generation: {e}") time_generate = time.time() - start print('\n') print('-'*4+'End Generation'+'-'*4) print(f'Num of generated tokens: {NUM_TOKENS}') print(f'Time for complete generation: {time_generate}s') print(f'Tokens per secound: {NUM_TOKENS/time_generate}') print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') elif model_type == LARGE_MODEL_NAME: #tokens = model.tokenize(full_prompt) gen_config = CtransGenGenerationConfig() gen_config.update_temp(temperature) print(vars(gen_config)) # Pull the generated text from the streamer, and update the model output. start = time.time() NUM_TOKENS=0 print('-'*4+'Start Generation'+'-'*4) output = model_object( full_prompt, **vars(gen_config)) history.append({"metadata":None, "options":None, "role": "assistant", "content": ""}) for out in output: if "choices" in out and len(out["choices"]) > 0 and "text" in out["choices"][0]: history[-1]['content'] += out["choices"][0]["text"] NUM_TOKENS+=1 yield history else: print(f"Unexpected output structure: {out}") time_generate = time.time() - start print('\n') print('-'*4+'End Generation'+'-'*4) print(f'Num of generated tokens: {NUM_TOKENS}') print(f'Time for complete generation: {time_generate}s') print(f'Tokens per second: {NUM_TOKENS/time_generate}') print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') elif "claude" in model_type: system_prompt = "You are answering questions from the user based on source material. Make sure to fully answer the questions with all required detail." print("full_prompt:", full_prompt) if isinstance(full_prompt, str): full_prompt = [full_prompt] model = model_type config = {} responses, summary_conversation_history, whole_summary_conversation, whole_conversation_metadata = process_requests(full_prompt, system_prompt, conversation_history=[], whole_conversation=[], whole_conversation_metadata=[], model=model, config = config, model_choice = model_type, temperature = temperature) if isinstance(responses[-1], ResponseObject): response_texts = [resp.text for resp in responses] elif "choices" in responses[-1]: response_texts = [resp["choices"][0]['text'] for resp in responses] else: response_texts = [resp.text for resp in responses] latest_response_text = response_texts[-1] # Update the conversation history with the new prompt and response clean_text = re.sub(r'[\n\t\r]', ' ', latest_response_text) # Replace newlines, tabs, and carriage returns with a space clean_response_text = re.sub(r'[^\x20-\x7E]', '', clean_text).strip() # Remove all non-ASCII printable characters history.append({"metadata":None, "options":None, "role": "assistant", "content": ''}) for char in clean_response_text: time.sleep(0.005) history[-1]['content'] += char yield history elif "gemini" in model_type: if in_api_key: gemini_api_key = in_api_key elif GEMINI_API_KEY: gemini_api_key = GEMINI_API_KEY else: raise Exception("Gemini API key not found. Please enter a key on the Advanced settings page or select another model type") if isinstance(full_prompt, str): full_prompt = [full_prompt] system_prompt = "You are answering questions from the user based on source material. Make sure to fully answer the questions with all required detail." model, config = construct_gemini_generative_model(gemini_api_key, temperature, model_type, system_prompt, max_tokens) responses, summary_conversation_history, whole_summary_conversation, whole_conversation_metadata = process_requests(full_prompt, system_prompt, conversation_history=[], whole_conversation=[], whole_conversation_metadata=[], model=model, config = config, model_choice = model_type, temperature = temperature) if isinstance(responses[-1], ResponseObject): response_texts = [resp.text for resp in responses] elif "choices" in responses[-1]: response_texts = [resp["choices"][0]['text'] for resp in responses] else: response_texts = [resp.text for resp in responses] latest_response_text = response_texts[-1] clean_text = re.sub(r'[\n\t\r]', ' ', latest_response_text) # Replace newlines, tabs, and carriage returns with a space clean_response_text = re.sub(r'[^\x20-\x7E]', '', clean_text).strip() # Remove all non-ASCII printable characters history.append({"metadata":None, "options":None, "role": "assistant", "content": ''}) for char in clean_response_text: time.sleep(0.005) history[-1]['content'] += char yield history print("history at end of function:", history) # Chat helper functions def adapt_q_from_chat_history(question, chat_history, extracted_memory, keyword_model=""):#keyword_model): # new_question_keywords, chat_history_str, chat_history_first_q, chat_history_first_ans, max_memory_length = _get_chat_history(chat_history) if chat_history_str: # Keyword extraction is now done in the add_inputs_to_history function #remove_q_stopwords(str(chat_history_first_q) + " " + str(chat_history_first_ans)) new_question_kworded = str(extracted_memory) + ". " + question #+ " " + new_question_keywords #extracted_memory + " " + question else: new_question_kworded = question #new_question_keywords #print("Question output is: " + new_question_kworded) return new_question_kworded def determine_file_type(file_path): """ Determine the file type based on its extension. Parameters: file_path (str): Path to the file. Returns: str: File extension (e.g., '.pdf', '.docx', '.txt', '.html'). """ return os.path.splitext(file_path)[1].lower() def create_doc_df(docs_keep_out): # Extract content and metadata from 'winning' passages. content=[] meta=[] meta_url=[] page_section=[] score=[] doc_df = pd.DataFrame() for item in docs_keep_out: content.append(item[0].page_content) meta.append(item[0].metadata) meta_url.append(item[0].metadata['source']) file_extension = determine_file_type(item[0].metadata['source']) if (file_extension != ".csv") & (file_extension != ".xlsx"): page_section.append(item[0].metadata['page_section']) else: page_section.append("") score.append(item[1]) # Create df from 'winning' passages doc_df = pd.DataFrame(list(zip(content, meta, page_section, meta_url, score)), columns =['page_content', 'metadata', 'page_section', 'meta_url', 'score']) docs_content = doc_df['page_content'].astype(str) doc_df['full_url'] = "https://" + doc_df['meta_url'] return doc_df def hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val, out_passages, vec_score_cut_off, vec_weight, bm25_weight, svm_weight): # ,vectorstore, embeddings #vectorstore=globals()["vectorstore"] #embeddings=globals()["embeddings"] doc_df = pd.DataFrame() docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val) # Keep only documents with a certain score docs_len = [len(x[0].page_content) for x in docs] docs_scores = [x[1] for x in docs] # Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below) score_more_limit = pd.Series(docs_scores) < vec_score_cut_off docs_keep = list(compress(docs, score_more_limit)) if not docs_keep: return [], pd.DataFrame(), [] # Only keep sources that are at least 100 characters long length_more_limit = pd.Series(docs_len) >= 100 docs_keep = list(compress(docs_keep, length_more_limit)) if not docs_keep: return [], pd.DataFrame(), [] docs_keep_as_doc = [x[0] for x in docs_keep] docs_keep_length = len(docs_keep_as_doc) if docs_keep_length == 1: content=[] meta_url=[] score=[] for item in docs_keep: content.append(item[0].page_content) meta_url.append(item[0].metadata['source']) score.append(item[1]) # Create df from 'winning' passages doc_df = pd.DataFrame(list(zip(content, meta_url, score)), columns =['page_content', 'meta_url', 'score']) docs_content = doc_df['page_content'].astype(str) docs_url = doc_df['meta_url'] return docs_keep_as_doc, doc_df, docs_content, docs_url # Check for if more docs are removed than the desired output if out_passages > docs_keep_length: out_passages = docs_keep_length k_val = docs_keep_length vec_rank = [*range(1, docs_keep_length+1)] vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank] print("Number of documents remaining: ", docs_keep_length) # 2nd level check using BM25s package to do keyword search on retrieved passages. content_keep=[] for item in docs_keep: content_keep.append(item[0].page_content) # Prepare Corpus (Tokenized & Optional Stemming) corpus = [doc.lower() for doc in content_keep] #stemmer = SnowballStemmer("english", ignore_stopwords=True) # NLTK stemming not compatible stemmer = Stemmer.Stemmer("english") corpus_tokens = bm25s.tokenize(corpus, stopwords="en", stemmer=stemmer) # Create and Index with BM25s retriever = bm25s.BM25() retriever.index(corpus_tokens) # Query Processing (Stemming applied consistently if used above) query_tokens = bm25s.tokenize(new_question_kworded.lower(), stemmer=stemmer) results, scores = retriever.retrieve(query_tokens, corpus=corpus, k=len(corpus)) # Retrieve all docs for i in range(results.shape[1]): doc, score = results[0, i], scores[0, i] print(f"Rank {i+1} (score: {score:.2f}): {doc}") #print("BM25 results:", results) #print("BM25 scores:", scores) # Rank Calculation (Custom Logic for Your BM25 Score) bm25_rank = list(range(1, len(results[0]) + 1)) #bm25_rank = results[0]#.tolist()[0] # Since you have a single query bm25_score = [(docs_keep_length / (rank + 1)) * bm25_weight for rank in bm25_rank] # +1 to avoid division by 0 for rank 0 # Result Ordering (Using the calculated ranks) pairs = list(zip(bm25_rank, docs_keep_as_doc)) pairs.sort() bm25_result = [value for rank, value in pairs] # 3rd level check on retrieved docs with SVM retriever # Check the type of the embeddings object embeddings_type = type(embeddings) #hf_embeddings = HuggingFaceEmbeddings(**embeddings) hf_embeddings = embeddings svm_retriever = SVMRetriever.from_texts(content_keep, hf_embeddings, k = k_val) svm_result = svm_retriever.invoke(new_question_kworded) svm_rank=[] svm_score = [] for vec_item in docs_keep: x = 0 for svm_item in svm_result: x = x + 1 if svm_item.page_content == vec_item[0].page_content: svm_rank.append(x) svm_score.append((docs_keep_length/x)*svm_weight) ## Calculate final score based on three ranking methods final_score = [a + b + c for a, b, c in zip(vec_score, bm25_score, svm_score)] final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score] # Force final_rank to increment by 1 each time final_rank = list(pd.Series(final_rank).rank(method='first')) #print("final rank: " + str(final_rank)) #print("out_passages: " + str(out_passages)) best_rank_index_pos = [] for x in range(1,out_passages+1): try: best_rank_index_pos.append(final_rank.index(x)) except IndexError: # catch the error pass # Adjust best_rank_index_pos to best_rank_pos_series = pd.Series(best_rank_index_pos) docs_keep_out = [docs_keep[i] for i in best_rank_index_pos] # Keep only 'best' options docs_keep_as_doc = [x[0] for x in docs_keep_out] # Make df of best options doc_df = create_doc_df(docs_keep_out) return docs_keep_as_doc, doc_df, docs_keep_out def get_expanded_passages(vectorstore, docs, width): """ Extracts expanded passages based on given documents and a width for context. Parameters: - vectorstore: The primary data source. - docs: List of documents to be expanded. - width: Number of documents to expand around a given document for context. Returns: - expanded_docs: List of expanded Document objects. - doc_df: DataFrame representation of expanded_docs. """ from collections import defaultdict def get_docs_from_vstore(vectorstore): vector = vectorstore.docstore._dict return list(vector.items()) def extract_details(docs_list): docs_list_out = [tup[1] for tup in docs_list] content = [doc.page_content for doc in docs_list_out] meta = [doc.metadata for doc in docs_list_out] return ''.join(content), meta[0], meta[-1] def get_parent_content_and_meta(vstore_docs, width, target): #target_range = range(max(0, target - width), min(len(vstore_docs), target + width + 1)) target_range = range(max(0, target), min(len(vstore_docs), target + width + 1)) # Now only selects extra passages AFTER the found passage parent_vstore_out = [vstore_docs[i] for i in target_range] content_str_out, meta_first_out, meta_last_out = [], [], [] for _ in parent_vstore_out: content_str, meta_first, meta_last = extract_details(parent_vstore_out) content_str_out.append(content_str) meta_first_out.append(meta_first) meta_last_out.append(meta_last) return content_str_out, meta_first_out, meta_last_out def merge_dicts_except_source(d1, d2): merged = {} for key in d1: if key != "source": merged[key] = str(d1[key]) + " to " + str(d2[key]) else: merged[key] = d1[key] # or d2[key], based on preference return merged def merge_two_lists_of_dicts(list1, list2): return [merge_dicts_except_source(d1, d2) for d1, d2 in zip(list1, list2)] # Step 1: Filter vstore_docs vstore_docs = get_docs_from_vstore(vectorstore) doc_sources = {doc.metadata['source'] for doc, _ in docs} vstore_docs = [(k, v) for k, v in vstore_docs if v.metadata.get('source') in doc_sources] # Step 2: Group by source and proceed vstore_by_source = defaultdict(list) for k, v in vstore_docs: vstore_by_source[v.metadata['source']].append((k, v)) expanded_docs = [] for doc, score in docs: search_source = doc.metadata['source'] #if file_type == ".csv" | file_type == ".xlsx": # content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_by_source[search_source], 0, search_index) #else: search_section = doc.metadata['page_section'] parent_vstore_meta_section = [doc.metadata['page_section'] for _, doc in vstore_by_source[search_source]] search_index = parent_vstore_meta_section.index(search_section) if search_section in parent_vstore_meta_section else -1 content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_by_source[search_source], width, search_index) meta_full = merge_two_lists_of_dicts(meta_first, meta_last) expanded_doc = (Document(page_content=content_str[0], metadata=meta_full[0]), score) expanded_docs.append(expanded_doc) doc_df = pd.DataFrame() doc_df = create_doc_df(expanded_docs) # Assuming you've defined the 'create_doc_df' function elsewhere return expanded_docs, doc_df def highlight_found_text(chat_history: list[dict], source_texts: list[dict], hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str: """ Highlights occurrences of chat_history within source_texts. Parameters: - chat_history (str): The text to be searched for within source_texts. - source_texts (str): The text within which chat_history occurrences will be highlighted. Returns: - str: A string with occurrences of chat_history highlighted. Example: >>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.") 'Hello, world! This is a test. Another world awaits.' """ def extract_text_from_input(text, i=0): if isinstance(text, str): return text.replace(" ", " ").strip() elif isinstance(text, list): return text[i][0].replace(" ", " ").strip() else: return "" print("chat_history:", chat_history) response_text = next( (entry['content'] for entry in reversed(chat_history) if entry.get('role') == 'assistant'), "") source_texts = extract_text_from_input(source_texts) text_splitter = RecursiveCharacterTextSplitter( chunk_size=hlt_chunk_size, separators=hlt_strat, chunk_overlap=hlt_overlap, ) sections = text_splitter.split_text(response_text) found_positions = {} for x in sections: text_start_pos = 0 while text_start_pos != -1: text_start_pos = source_texts.find(x, text_start_pos) if text_start_pos != -1: found_positions[text_start_pos] = text_start_pos + len(x) text_start_pos += 1 # Combine overlapping or adjacent positions sorted_starts = sorted(found_positions.keys()) combined_positions = [] if sorted_starts: current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]] for start in sorted_starts[1:]: if start <= (current_end + 10): current_end = max(current_end, found_positions[start]) else: combined_positions.append((current_start, current_end)) current_start, current_end = start, found_positions[start] combined_positions.append((current_start, current_end)) # Construct pos_tokens pos_tokens = [] prev_end = 0 for start, end in combined_positions: if end-start > 15: # Only combine if there is a significant amount of matched text. Avoids picking up single words like 'and' etc. pos_tokens.append(source_texts[prev_end:start]) pos_tokens.append('' + source_texts[start:end] + '') prev_end = end pos_tokens.append(source_texts[prev_end:]) out_pos_tokens = "".join(pos_tokens) return out_pos_tokens # # Chat history functions def clear_chat(chat_history_state, sources, chat_message, current_topic): chat_history_state = None sources = '' chat_message = None current_topic = '' return chat_history_state, sources, chat_message, current_topic def _get_chat_history(chat_history: List[Tuple[str, str]], max_memory_length:int = max_memory_length): # Limit to last x interactions only if (not chat_history) | (max_memory_length == 0): chat_history = [] if len(chat_history) > max_memory_length: chat_history = chat_history[-max_memory_length:] #print(chat_history) first_q = "" first_ans = "" for human_s, ai_s in chat_history: first_q = human_s first_ans = ai_s #print("Text to keyword extract: " + first_q + " " + first_ans) break conversation = "" for human_s, ai_s in chat_history: human = f"Human: " + human_s ai = f"Assistant: " + ai_s conversation += "\n" + "\n".join([human, ai]) return conversation, first_q, first_ans, max_memory_length def add_inputs_answer_to_history(user_message, history, current_topic): if history is None: history = [("","")] #history.append((user_message, [-1])) chat_history_str, chat_history_first_q, chat_history_first_ans, max_memory_length = _get_chat_history(history) # Only get the keywords for the first question and response, or do it every time if over 'max_memory_length' responses in the conversation if (len(history) == 1) | (len(history) > max_memory_length): #print("History after appending is:") #print(history) first_q_and_first_ans = str(chat_history_first_q) + " " + str(chat_history_first_ans) #ner_memory = remove_q_ner_extractor(first_q_and_first_ans) keywords = keybert_keywords(first_q_and_first_ans, n = 8, kw_model=kw_model) #keywords.append(ner_memory) # Remove duplicate words while preserving order ordered_tokens = set() result = [] for word in keywords: if word not in ordered_tokens: ordered_tokens.add(word) result.append(word) extracted_memory = ' '.join(result) else: extracted_memory=current_topic print("Extracted memory is:") print(extracted_memory) return history, extracted_memory # Keyword functions def remove_q_stopwords(question): # Remove stopwords from question. Not used at the moment # Prepare keywords from question by removing stopwords text = question.lower() # Remove numbers text = re.sub('[0-9]', '', text) tokenizer = RegexpTokenizer(r'\w+') text_tokens = tokenizer.tokenize(text) #text_tokens = word_tokenize(text) tokens_without_sw = [word for word in text_tokens if not word in stopwords] # Remove duplicate words while preserving order ordered_tokens = set() result = [] for word in tokens_without_sw: if word not in ordered_tokens: ordered_tokens.add(word) result.append(word) new_question_keywords = ' '.join(result) return new_question_keywords def remove_q_ner_extractor(question): predict_out = ner_model.predict(question) predict_tokens = [' '.join(v for k, v in d.items() if k == 'span') for d in predict_out] # Remove duplicate words while preserving order ordered_tokens = set() result = [] for word in predict_tokens: if word not in ordered_tokens: ordered_tokens.add(word) result.append(word) new_question_keywords = ' '.join(result).lower() return new_question_keywords def apply_lemmatize(text, wnl=WordNetLemmatizer()): def prep_for_lemma(text): # Remove numbers text = re.sub('[0-9]', '', text) print(text) tokenizer = RegexpTokenizer(r'\w+') text_tokens = tokenizer.tokenize(text) #text_tokens = word_tokenize(text) return text_tokens tokens = prep_for_lemma(text) def lem_word(word): if len(word) > 3: out_word = wnl.lemmatize(word) else: out_word = word return out_word return [lem_word(token) for token in tokens] def keybert_keywords(text, n, kw_model): tokens_lemma = apply_lemmatize(text) lemmatised_text = ' '.join(tokens_lemma) keywords_text = KeyBERT(model=kw_model).extract_keywords(lemmatised_text, stop_words='english', top_n=n, keyphrase_ngram_range=(1, 1)) keywords_list = [item[0] for item in keywords_text] return keywords_list # Gradio functions def turn_off_interactivity(): return gr.Textbox(interactive=False), gr.Button(interactive=False) def restore_interactivity(): return gr.Textbox(interactive=True), gr.Button(interactive=True) def update_message(dropdown_value): return gr.Textbox(value=dropdown_value) def hide_block(): return gr.Radio(visible=False) # Vote function def vote(data: gr.LikeData, chat_history:list[dict], instruction_prompt_out:str, model_type:str, feedback_folder:str=FEEDBACK_LOGS_FOLDER): query_text = next( (entry['content'] for entry in reversed(chat_history) if entry.get('role') == 'user'), "") response_text = next( (entry['content'] for entry in reversed(chat_history) if entry.get('role') == 'assistant'), "") chat_history_latest = str(query_text + " - " + response_text) if isinstance(data.value, list): chosen_response = data.value[-1] else: chosen_response = data.value response_df = pd.DataFrame(data={"thumbs_up":data.liked, "chosen_response":chosen_response, "input_prompt":instruction_prompt_out, "chat_history":chat_history_latest, "model_type": model_type, "date_time": pd.Timestamp.now()}, index=[0]) if data.liked: print("You upvoted this response:", chosen_response) else: print("You downvoted this response:", chosen_response) output_data_path = feedback_folder + "thumbs_up_down_data.csv" if os.path.isfile(output_data_path): existing_thumbs_down_df = pd.read_csv(output_data_path) thumbs_down_df_concat = pd.concat([existing_thumbs_down_df, response_df], ignore_index=True).drop("Unnamed: 0",axis=1, errors="ignore") thumbs_down_df_concat.to_csv(output_data_path) else: response_df.to_csv(output_data_path) return output_data_path