File size: 17,406 Bytes
dd1cbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import pandas as pd
from typing import Type, Dict, List, Tuple
from datetime import datetime
#import polars as pl
import re

PandasDataFrame = Type[pd.DataFrame]
PandasSeries = Type[pd.Series]
MatchedResults = Dict[str,Tuple[str,int]]
array = List[str]

today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")


def prepare_search_address_string(
    search_str: str
) -> Tuple[pd.DataFrame, str, List[str], List[str]]:
    """Extracts address and postcode from search_str into new DataFrame"""

    # Validate input
    if not isinstance(search_str, str):
        raise TypeError("search_str must be a string")
        
    search_df = pd.DataFrame(data={"full_address":[search_str]})

    #print(search_df)
    
    # Extract postcode 
    postcode_series = extract_postcode(search_df, "full_address").dropna(axis=1)[0]

    # Remove postcode from address
    address_series = remove_postcode(search_df, "full_address")

    # Construct output DataFrame
    search_df_out = pd.DataFrame()
    search_df_out["full_address"] = address_series
    search_df_out["postcode"] = postcode_series

    # Set key field for joining
    key_field = "index"

    # Reset index to use as key field
    search_df_out = search_df_out.reset_index()

    # Define column names to return
    address_cols = ["full_address"]
    postcode_col = ["postcode"]

    return search_df_out, key_field, address_cols, postcode_col

# def prepare_search_address(
#     search_df: pd.DataFrame, 
#     address_cols: list,
#     postcode_col: list,
#     key_col: str
# ) -> Tuple[pd.DataFrame, str]:
    
#     # Validate inputs
#     if not isinstance(search_df, pd.DataFrame):
#         raise TypeError("search_df must be a Pandas DataFrame")
        
#     if not isinstance(address_cols, list):
#         raise TypeError("address_cols must be a list")
        
#     if not isinstance(postcode_col, list):
#         raise TypeError("postcode_col must be a list")
        
#     if not isinstance(key_col, str):
#         raise TypeError("key_col must be a string")
        
#     # Clean address columns
#     clean_addresses = _clean_columns(search_df, address_cols)
    
#     # Join address columns into one
#     full_addresses = _join_address(clean_addresses, address_cols)
    
#     # Add postcode column 
#     full_df = _add_postcode_column(full_addresses, postcode_col)
    
#     # Remove postcode from main address if there was only one column in the input
#     if postcode_col == "full_address_postcode":
#         # Remove postcode from address
#         address_series = remove_postcode(search_df, "full_address")
#         search_df["full_address"] == address_series
    
#     # Ensure index column
#     final_df = _ensure_index(full_df, key_col)

#     #print(final_df)

    
#     return final_df, key_col

def prepare_search_address(
    search_df: pd.DataFrame, 
    address_cols: list,
    postcode_col: list,
    key_col: str
) -> Tuple[pd.DataFrame, str]:
    
    # Validate inputs
    if not isinstance(search_df, pd.DataFrame):
        raise TypeError("search_df must be a Pandas DataFrame")
        
    if not isinstance(address_cols, list):
        raise TypeError("address_cols must be a list")
        
    if not isinstance(postcode_col, list):
        raise TypeError("postcode_col must be a list")
        
    if not isinstance(key_col, str):
        raise TypeError("key_col must be a string")
        
    # Clean address columns
    #search_df_polars = pl.from_dataframe(search_df)
    clean_addresses = _clean_columns(search_df, address_cols)
    
    # Join address columns into one
    full_addresses = _join_address(clean_addresses, address_cols)
    
    # Add postcode column 
    full_df = _add_postcode_column(full_addresses, postcode_col)
    
    # Remove postcode from main address if there was only one column in the input
    if postcode_col == "full_address_postcode":
        # Remove postcode from address
        address_series = remove_postcode(search_df, "full_address")
        search_df["full_address"] == address_series
    
    # Ensure index column
    final_df = _ensure_index(full_df, key_col)

    #print(final_df)

    
    return final_df

# Helper functions
def _clean_columns(df, cols):
   # Cleaning logic
   def clean_col(col):
       return col.astype(str).fillna("").infer_objects(copy=False).str.replace("nan","").str.replace("\s{2,}", " ", regex=True).str.replace(","," ").str.strip()

   df[cols] = df[cols].apply(clean_col)
    
   return df

# def _clean_columns(df, cols):
#     # Cleaning logic
#     #print(df)

#     #if isinstance(df, pl.DataFrame):
#     #    print("It's a Polars DataFrame")

#     def clean_col(col):
#         col = col.str.replace("nan", "")
#         col = col.apply(lambda x: re.sub(r'\s{2,}', ' ', str(x)), skip_nulls=False, return_dtype=str)  # replace any spaces greater than one with one
#         return col.str.replace(",", " ").str.strip()  # replace commas with a space

#     for col in cols:
#         df = df.with_columns(clean_col(df[col]).alias(col))

#     return df

   
def _join_address(df, cols):
   # Joining logic
   full_address = df[cols].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
   df["full_address"] = full_address.str.replace("\s{2,}", " ", regex=True).str.strip()
   
   return df
   
def _add_postcode_column(df, postcodes):
   # Add postcode column
   if isinstance(postcodes, list):
        postcodes = postcodes[0]
    
   if postcodes != "full_address_postcode":
        df = df.rename(columns={postcodes:"postcode"})
   else:
        #print(df["full_address_postcode"])
        #print(extract_postcode(df,"full_address_postcode"))
        df["full_address_postcode"] = extract_postcode(df,"full_address_postcode")[0] # 
        df = df.rename(columns={postcodes:"postcode"})
        #print(df)
   
   return df
   
def _ensure_index(df, index_col):
   # Ensure index column exists
   if ((index_col == "index") & ~("index" in df.columns)):
        print("Resetting index in _ensure_index function")   
        df = df.reset_index()

   df[index_col] = df[index_col].astype(str)

   return df

def create_full_address(df):

    df = df.fillna("").infer_objects(copy=False)

    if "Organisation" not in df.columns:
        df["Organisation"] = ""

    df["full_address"] = df['Organisation'] + " " + df['SaoText'].str.replace(" - ", " REPL ").str.replace("- ", " REPLEFT ").str.replace(" -", " REPLRIGHT ") + " " + df["SaoStartNumber"].astype(str) + df["SaoStartSuffix"] + "-" + df["SaoEndNumber"].astype(str) + df["SaoEndSuffix"] + " " + df["PaoText"].str.replace(" - ", " REPL ").str.replace("- ", " REPLEFT ").str.replace(" -", " REPLRIGHT ") + " " + df["PaoStartNumber"].astype(str) + df["PaoStartSuffix"] + "-" + df["PaoEndNumber"].astype(str) + df["PaoEndSuffix"] + " " + df["Street"] + " " + df["PostTown"] + " " + df["Postcode"]

    #.str.replace(r'(?<=[a-zA-Z])-(?![a-zA-Z])|(?<![a-zA-Z])-(?=[a-zA-Z])', ' ', regex=True)\
    
    #.str.replace(".0","", regex=False)\
    
    df["full_address"] = df["full_address"]\
    .str.replace("-999","")\
    .str.replace(" -"," ")\
    .str.replace("- "," ")\
    .str.replace(" REPL "," - ")\
    .str.replace(" REPLEFT ","- ")\
    .str.replace(" REPLRIGHT "," -")\
    .str.replace("\s+"," ", regex=True)\
    .str.strip()
    #.str.replace("  "," ")\
    
    return df["full_address"]

def prepare_ref_address(ref_df, ref_address_cols, new_join_col = ['UPRN'], standard_cols = True):
    
    if ('SaoText' in ref_df.columns) | ("Secondary_Name_LPI" in ref_df.columns): standard_cols = True
    else: standard_cols = False
    
    ref_address_cols_uprn = ref_address_cols.copy()

    ref_address_cols_uprn.extend(new_join_col)
    ref_address_cols_uprn_w_ref = ref_address_cols_uprn.copy()
    ref_address_cols_uprn_w_ref.extend(["Reference file"])

    ref_df_cleaned = ref_df.copy()
      
    # In on-prem LPI db street has been excluded, so put this back in
    if ('Street' not in ref_df_cleaned.columns) & ('Address_LPI' in ref_df_cleaned.columns): 
            ref_df_cleaned['Street'] = ref_df_cleaned['Address_LPI'].str.replace("\\n", " ", regex = True).apply(extract_street_name)#
        
    if ('Organisation' not in ref_df_cleaned.columns) & ('SaoText' in ref_df_cleaned.columns):
        ref_df_cleaned['Organisation'] = ""
     
    ref_df_cleaned = ref_df_cleaned[ref_address_cols_uprn_w_ref]

    ref_df_cleaned = ref_df_cleaned.fillna("").infer_objects(copy=False)

    all_columns = list(ref_df_cleaned) # Creates list of all column headers
    ref_df_cleaned[all_columns] = ref_df_cleaned[all_columns].astype(str).fillna('').infer_objects(copy=False).replace('nan','')

    ref_df_cleaned = ref_df_cleaned.replace("\.0","",regex=True)

    # Create full address

    all_columns = list(ref_df_cleaned) # Creates list of all column headers
    ref_df_cleaned[all_columns] = ref_df_cleaned[all_columns].astype(str)

    ref_df_cleaned = ref_df_cleaned.replace("nan","")
    ref_df_cleaned = ref_df_cleaned.replace("\.0","",regex=True)
      
    if standard_cols == True:
        ref_df_cleaned= ref_df_cleaned[ref_address_cols_uprn_w_ref].fillna('').infer_objects(copy=False)

        ref_df_cleaned["fulladdress"] = create_full_address(ref_df_cleaned[ref_address_cols_uprn_w_ref])
    
    else: 
        ref_df_cleaned= ref_df_cleaned[ref_address_cols_uprn_w_ref].fillna('').infer_objects(copy=False)
        
        full_address  = ref_df_cleaned[ref_address_cols].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) 
        ref_df_cleaned["fulladdress"] = full_address

    ref_df_cleaned["fulladdress"] = ref_df_cleaned["fulladdress"]\
    .str.replace("-999","")\
    .str.replace(" -"," ")\
    .str.replace("- "," ")\
    .str.replace(".0","", regex=False)\
    .str.replace("\s{2,}", " ", regex=True)\
    .str.strip()
    
    # Create a street column if it doesn't exist by extracting street from the full address
    
    if 'Street' not in ref_df_cleaned.columns:        
        ref_df_cleaned['Street'] = ref_df_cleaned["fulladdress"].apply(extract_street_name)

    # Add index column
        ref_df_cleaned['ref_index'] = ref_df_cleaned.index
        
    return ref_df_cleaned

# def prepare_ref_address(ref_df:pl.DataFrame, ref_address_cols, new_join_col = ['UPRN'], standard_cols = True):
    
#     if ('SaoText' in ref_df.columns) | ("Secondary_Name_LPI" in ref_df.columns): 
#         standard_cols = True
#     else: 
#         standard_cols = False

#     ref_address_cols_uprn = list(ref_address_cols) + new_join_col
#     ref_df_cleaned = ref_df[ref_address_cols_uprn].fill_null("")
    
#     # In on-prem LPI db street has been excluded, so put this back in
#     if ('Street' not in ref_df_cleaned.columns) & ('Address_LPI' in ref_df_cleaned.columns): 
#         ref_df_cleaned = ref_df_cleaned.with_column(pl.col('Address_LPI').apply(lambda x: extract_street_name(x)).alias('Street'))  
        
#     if ('Organisation' not in ref_df_cleaned.columns) & ('SaoText' in ref_df_cleaned.columns): 
#         ref_df_cleaned = ref_df_cleaned.with_column(pl.lit("").alias('Organisation'))
     
#     #ref_df_cleaned['fulladdress'] = 
        
#     if standard_cols:
#         pass
#         # I can not write the full address code here as it depends on your extract_street_name and create_full_address function implementations. 
#         # However, you might need to convert string types to object type for full address creation which may require more than just a few lines of codes. 
#     else:
#         pass    
        
#         # I can not write the full address code here as it depends on your extract_street_name and create_full_address function implementations.
      
#     if 'Street' not in ref_df_cleaned.columns:  
#         ref_df_cleaned = ref_df_cleaned.with_column(pl.col('fulladdress').apply(extract_street_name).alias("Street"))
    
#     # Add index column
#     ref_df_cleaned = ref_df_cleaned.with_column(pl.lit('').alias('ref_index'))
        
#     return ref_df_cleaned


def extract_postcode(df, col:str) -> PandasSeries:
    '''
    Extract a postcode from a string column in a dataframe
    '''
    postcode_series = df[col].str.upper().str.extract(pat = \
    "(\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\\b$)")
    
    return postcode_series


# Remove addresses with no numbers in at all - too high a risk of badly assigning an address
def check_no_number_addresses(df, in_address_series) -> PandasSeries:
    '''
    Highlight addresses from a pandas df where there are no numbers in the address.
    '''
    df["in_address_series_temp"] = df[in_address_series].str.lower()

    no_numbers_series = df["in_address_series_temp"].str.contains("^(?!.*\d+).*$", regex=True)

    df.loc[no_numbers_series == True, 'Excluded from search'] = "Excluded - no numbers in address"

    df = df.drop("in_address_series_temp", axis = 1)

    #print(df[["full_address", "Excluded from search"]])

    return df


def remove_postcode(df, col:str) -> PandasSeries:
    '''
    Remove a postcode from a string column in a dataframe
    '''
    address_series_no_pcode = df[col].str.upper().str.replace(\
    "\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2}|GIR ?0A{2})\\b$|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$|\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\\b$","", regex=True).str.lower()
    
    return address_series_no_pcode

def extract_street_name(address:str) -> str:
    """
    Extracts the street name from the given address.

    Args:
        address (str): The input address string.

    Returns:
        str: The extracted street name, or an empty string if no match is found.

    Examples:
        >>> address1 = "1 Ash Park Road SE54 3HB"
        >>> extract_street_name(address1)
        'Ash Park Road'

        >>> address2 = "Flat 14 1 Ash Park Road SE54 3HB"
        >>> extract_street_name(address2)
        'Ash Park Road'

        >>> address3 = "123 Main Blvd"
        >>> extract_street_name(address3)
        'Main Blvd'

        >>> address4 = "456 Maple AvEnUe"
        >>> extract_street_name(address4)
        'Maple AvEnUe'

        >>> address5 = "789 Oak Street"
        >>> extract_street_name(address5)
        'Oak Street'
    """
    
   
    street_types = [
        'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway',
        'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd',
        'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy',
        'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate',
        'Alley', 'Arcade','Avenue', 'Ave','Bay','Bend','Brae','Byway','Close','Corner','Cove',
        'Crescent', 'Cres','Cul-de-sac','Dell','Drive', 'Dr','Esplanade','Glen','Green','Grove','Heights', 'Hts',
        'Mews','Parade','Path','Piazza','Promenade','Quay','Ridge','Row','Terrace', 'Ter','Track','Trail','View','Villas',
        'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side'
    ]

    # Dynamically construct the regex pattern with all possible street types
    street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types)

    # The overall regex pattern to capture the street name
    pattern = rf'(?:\d+\s+|\w+\s+\d+\s+|.*\d+[a-z]+\s+|.*\d+\s+)*(?P<street_name>[\w\s]+(?:{street_types_pattern}))'

    def replace_postcode(address):
        pattern = r'\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2}|GIR ?0A{2})\b$|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$|\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$'
        return re.sub(pattern, "", address)

    
    modified_address = replace_postcode(address.upper())
    #print(modified_address)
    #print(address)
       
    # Perform a case-insensitive search
    match = re.search(pattern, modified_address, re.IGNORECASE)

    if match:
        street_name = match.group('street_name')
        return street_name.strip()
    else:
        return ""
    
    
    # Exclude non-postal addresses

def remove_non_postal(df, in_address_series):
    '''
    Highlight non-postal addresses from a polars df where a string series that contain specific substrings
    indicating non-postal addresses like 'garage', 'parking', 'shed', etc.
    '''
    df["in_address_series_temp"] = df[in_address_series].str.lower()

    garage_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bgarage\\b|\\bgarages\\b)", regex=True)
    parking_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bparking\\b)", regex=True)
    shed_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bshed\\b|\\bsheds\\b)", regex=True)
    bike_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bbike\\b|\\bbikes\\b)", regex=True)
    bicycle_store_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bbicycle store\\b|\\bbicycle store\\b)", regex=True)

    non_postal_series = (garage_address_series | parking_address_series | shed_address_series | bike_address_series | bicycle_store_address_series)
    
    df.loc[non_postal_series == True, 'Excluded from search'] = "Excluded - non-postal address"

    df = df.drop("in_address_series_temp", axis = 1)

    return df