File size: 13,619 Bytes
dd1cbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115b61f
dd1cbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c163ee
dd1cbb4
 
 
 
 
 
eda6ed8
 
dd1cbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import pandas as pd
from typing import Type, Dict, List, Tuple
from datetime import datetime
#import polars as pl
import re

PandasDataFrame = Type[pd.DataFrame]
PandasSeries = Type[pd.Series]
MatchedResults = Dict[str,Tuple[str,int]]
array = List[str]

today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")


def prepare_search_address_string(
    search_str: str
) -> Tuple[pd.DataFrame, str, List[str], List[str]]:
    """Extracts address and postcode from search_str into new DataFrame"""

    # Validate input
    if not isinstance(search_str, str):
        raise TypeError("search_str must be a string")
        
    search_df = pd.DataFrame(data={"full_address":[search_str]})

    #print(search_df)
    
    # Extract postcode 
    postcode_series = extract_postcode(search_df, "full_address").dropna(axis=1)[0]

    # Remove postcode from address
    address_series = remove_postcode(search_df, "full_address")

    # Construct output DataFrame
    search_df_out = pd.DataFrame()
    search_df_out["full_address"] = address_series
    search_df_out["postcode"] = postcode_series

    # Set key field for joining
    key_field = "index"

    # Reset index to use as key field
    search_df_out = search_df_out.reset_index()

    # Define column names to return
    address_cols = ["full_address"]
    postcode_col = ["postcode"]

    return search_df_out, key_field, address_cols, postcode_col

def prepare_search_address(
    search_df: pd.DataFrame, 
    address_cols: list,
    postcode_col: list,
    key_col: str
) -> Tuple[pd.DataFrame, str]:
    
    # Validate inputs
    if not isinstance(search_df, pd.DataFrame):
        raise TypeError("search_df must be a Pandas DataFrame")
        
    if not isinstance(address_cols, list):
        raise TypeError("address_cols must be a list")
        
    if not isinstance(postcode_col, list):
        raise TypeError("postcode_col must be a list")
        
    if not isinstance(key_col, str):
        raise TypeError("key_col must be a string")
        
    # Clean address columns
    #search_df_polars = pl.from_dataframe(search_df)
    clean_addresses = _clean_columns(search_df, address_cols)
    
    # Join address columns into one
    full_addresses = _join_address(clean_addresses, address_cols)
    
    # Add postcode column 
    full_df = _add_postcode_column(full_addresses, postcode_col)
    
    # Remove postcode from main address if there was only one column in the input
    if postcode_col == "full_address_postcode":
        # Remove postcode from address
        address_series = remove_postcode(search_df, "full_address")
        search_df["full_address"] == address_series
    
    # Ensure index column
    final_df = _ensure_index(full_df, key_col)

    #print(final_df)

    
    return final_df

# Helper functions
def _clean_columns(df, cols):
   # Cleaning logic
   def clean_col(col):
       return col.astype(str).fillna("").infer_objects(copy=False).str.replace("nan","").str.replace("\s{2,}", " ", regex=True).str.replace(","," ").str.strip()

   df[cols] = df[cols].apply(clean_col)
    
   return df
 
def _join_address(df, cols):
   # Joining logic
   full_address = df[cols].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
   df["full_address"] = full_address.str.replace("\s{2,}", " ", regex=True).str.strip()
   
   return df
   
def _add_postcode_column(df, postcodes):
   # Add postcode column
   if isinstance(postcodes, list):
        postcodes = postcodes[0]
    
   if postcodes != "full_address_postcode":
        df = df.rename(columns={postcodes:"postcode"})
   else:
        #print(df["full_address_postcode"])
        #print(extract_postcode(df,"full_address_postcode"))
        df["full_address_postcode"] = extract_postcode(df,"full_address_postcode")[0] # 
        df = df.rename(columns={postcodes:"postcode"})
        #print(df)
   
   return df
   
def _ensure_index(df, index_col):
   # Ensure index column exists
   if ((index_col == "index") & ~("index" in df.columns)):
        print("Resetting index in _ensure_index function")   
        df = df.reset_index()

   df[index_col] = df[index_col].astype(str)

   return df

def create_full_address(df):

    df = df.fillna("").infer_objects(copy=False)

    if "Organisation" not in df.columns:
        df["Organisation"] = ""

    df["full_address"] = df['Organisation'] + " " + df['SaoText'].str.replace(" - ", " REPL ").str.replace("- ", " REPLEFT ").str.replace(" -", " REPLRIGHT ") + " " + df["SaoStartNumber"].astype(str) + df["SaoStartSuffix"] + "-" + df["SaoEndNumber"].astype(str) + df["SaoEndSuffix"] + " " + df["PaoText"].str.replace(" - ", " REPL ").str.replace("- ", " REPLEFT ").str.replace(" -", " REPLRIGHT ") + " " + df["PaoStartNumber"].astype(str) + df["PaoStartSuffix"] + "-" + df["PaoEndNumber"].astype(str) + df["PaoEndSuffix"] + " " + df["Street"] + " " + df["PostTown"] + " " + df["Postcode"]

    #.str.replace(r'(?<=[a-zA-Z])-(?![a-zA-Z])|(?<![a-zA-Z])-(?=[a-zA-Z])', ' ', regex=True)\
    
    #.str.replace(".0","", regex=False)\
    
    df["full_address"] = df["full_address"]\
    .str.replace("-999","")\
    .str.replace(" -"," ")\
    .str.replace("- "," ")\
    .str.replace(" REPL "," - ")\
    .str.replace(" REPLEFT ","- ")\
    .str.replace(" REPLRIGHT "," -")\
    .str.replace("\s+"," ", regex=True)\
    .str.strip()
    #.str.replace("  "," ")\
    
    return df["full_address"]

def prepare_ref_address(ref_df, ref_address_cols, new_join_col = [], standard_cols = True):
    
    if ('SaoText' in ref_df.columns) | ("Secondary_Name_LPI" in ref_df.columns): standard_cols = True
    else: standard_cols = False
    
    ref_address_cols_uprn = ref_address_cols.copy()

    if new_join_col: ref_address_cols_uprn.extend(new_join_col)
    
    ref_address_cols_uprn_w_ref = ref_address_cols_uprn.copy()
    ref_address_cols_uprn_w_ref.extend(["Reference file"])

    ref_df_cleaned = ref_df.copy()
      
    # In on-prem LPI db street has been excluded, so put this back in
    if ('Street' not in ref_df_cleaned.columns) & ('Address_LPI' in ref_df_cleaned.columns): 
            ref_df_cleaned['Street'] = ref_df_cleaned['Address_LPI'].str.replace("\\n", " ", regex = True).apply(extract_street_name)#
        
    if ('Organisation' not in ref_df_cleaned.columns) & ('SaoText' in ref_df_cleaned.columns):
        ref_df_cleaned['Organisation'] = ""
     
    ref_df_cleaned = ref_df_cleaned[ref_address_cols_uprn_w_ref]

    ref_df_cleaned = ref_df_cleaned.fillna("").infer_objects(copy=False)

    all_columns = list(ref_df_cleaned) # Creates list of all column headers
    ref_df_cleaned[all_columns] = ref_df_cleaned[all_columns].astype(str).fillna('').infer_objects(copy=False).replace('nan','')

    ref_df_cleaned = ref_df_cleaned.replace("\.0","",regex=True)

    # Create full address

    all_columns = list(ref_df_cleaned) # Creates list of all column headers
    ref_df_cleaned[all_columns] = ref_df_cleaned[all_columns].astype(str)

    ref_df_cleaned = ref_df_cleaned.replace("nan","")
    ref_df_cleaned = ref_df_cleaned.replace("\.0","",regex=True)
      
    if standard_cols == True:
        ref_df_cleaned= ref_df_cleaned[ref_address_cols_uprn_w_ref].fillna('').infer_objects(copy=False)

        ref_df_cleaned["fulladdress"] = create_full_address(ref_df_cleaned[ref_address_cols_uprn_w_ref])
    
    else: 
        ref_df_cleaned= ref_df_cleaned[ref_address_cols_uprn_w_ref].fillna('').infer_objects(copy=False)
        
        full_address  = ref_df_cleaned[ref_address_cols].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) 
        ref_df_cleaned["fulladdress"] = full_address

    ref_df_cleaned["fulladdress"] = ref_df_cleaned["fulladdress"]\
    .str.replace("-999","")\
    .str.replace(" -"," ")\
    .str.replace("- "," ")\
    .str.replace(".0","", regex=False)\
    .str.replace("\s{2,}", " ", regex=True)\
    .str.strip()
    
    # Create a street column if it doesn't exist by extracting street from the full address
    
    if 'Street' not in ref_df_cleaned.columns:        
        ref_df_cleaned['Street'] = ref_df_cleaned["fulladdress"].apply(extract_street_name)

    # Add index column
        ref_df_cleaned['ref_index'] = ref_df_cleaned.index
        
    return ref_df_cleaned

def extract_postcode(df, col:str) -> PandasSeries:
    '''
    Extract a postcode from a string column in a dataframe
    '''
    postcode_series = df[col].str.upper().str.extract(pat = \
    "(\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\\b$)")
    
    return postcode_series

# Remove addresses with no numbers in at all - too high a risk of badly assigning an address
def check_no_number_addresses(df, in_address_series) -> PandasSeries:
    '''
    Highlight addresses from a pandas df where there are no numbers in the address.
    '''
    df["in_address_series_temp"] = df[in_address_series].str.lower()

    no_numbers_series = df["in_address_series_temp"].str.contains("^(?!.*\d+).*$", regex=True)

    df.loc[no_numbers_series == True, 'Excluded from search'] = "Excluded - no numbers in address"

    df = df.drop("in_address_series_temp", axis = 1)

    #print(df[["full_address", "Excluded from search"]])

    return df

def remove_postcode(df, col:str) -> PandasSeries:
    '''
    Remove a postcode from a string column in a dataframe
    '''
    address_series_no_pcode = df[col].str.upper().str.replace(\
    "\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2}|GIR ?0A{2})\\b$|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$|\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\\b$","", regex=True).str.lower()
    
    return address_series_no_pcode

def extract_street_name(address:str) -> str:
    """
    Extracts the street name from the given address.

    Args:
        address (str): The input address string.

    Returns:
        str: The extracted street name, or an empty string if no match is found.

    Examples:
        >>> address1 = "1 Ash Park Road SE54 3HB"
        >>> extract_street_name(address1)
        'Ash Park Road'

        >>> address2 = "Flat 14 1 Ash Park Road SE54 3HB"
        >>> extract_street_name(address2)
        'Ash Park Road'

        >>> address3 = "123 Main Blvd"
        >>> extract_street_name(address3)
        'Main Blvd'

        >>> address4 = "456 Maple AvEnUe"
        >>> extract_street_name(address4)
        'Maple AvEnUe'

        >>> address5 = "789 Oak Street"
        >>> extract_street_name(address5)
        'Oak Street'
    """
    
   
    street_types = [
        'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway',
        'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd',
        'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy',
        'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate',
        'Alley', 'Arcade','Avenue', 'Ave','Bay','Bend','Brae','Byway','Close','Corner','Cove',
        'Crescent', 'Cres','Cul-de-sac','Dell','Drive', 'Dr','Esplanade','Glen','Green','Grove','Heights', 'Hts',
        'Mews','Parade','Path','Piazza','Promenade','Quay','Ridge','Row','Terrace', 'Ter','Track','Trail','View','Villas',
        'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side'
    ]

    # Dynamically construct the regex pattern with all possible street types
    street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types)

    # The overall regex pattern to capture the street name
    pattern = rf'(?:\d+\s+|\w+\s+\d+\s+|.*\d+[a-z]+\s+|.*\d+\s+)*(?P<street_name>[\w\s]+(?:{street_types_pattern}))'

    def replace_postcode(address):
        pattern = r'\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2}|GIR ?0A{2})\b$|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$|\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$'
        return re.sub(pattern, "", address)

    
    modified_address = replace_postcode(address.upper())
    #print(modified_address)
    #print(address)
       
    # Perform a case-insensitive search
    match = re.search(pattern, modified_address, re.IGNORECASE)

    if match:
        street_name = match.group('street_name')
        return street_name.strip()
    else:
        return ""
    
    
    # Exclude non-postal addresses

def remove_non_postal(df, in_address_series):
    '''
    Highlight non-postal addresses from a polars df where a string series that contain specific substrings
    indicating non-postal addresses like 'garage', 'parking', 'shed', etc.
    '''
    df["in_address_series_temp"] = df[in_address_series].str.lower()

    garage_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bgarage\\b|\\bgarages\\b)", regex=True)
    parking_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bparking\\b)", regex=True)
    shed_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bshed\\b|\\bsheds\\b)", regex=True)
    bike_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bbike\\b|\\bbikes\\b)", regex=True)
    bicycle_store_address_series = df["in_address_series_temp"].str.contains("(?i)(?:\\bbicycle store\\b|\\bbicycle store\\b)", regex=True)

    non_postal_series = (garage_address_series | parking_address_series | shed_address_series | bike_address_series | bicycle_store_address_series)
    
    df.loc[non_postal_series == True, 'Excluded from search'] = "Excluded - non-postal address"

    df = df.drop("in_address_series_temp", axis = 1)

    return df