File size: 6,086 Bytes
dd1cbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch.nn as nn

class TextClassifier(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers,
                 dropout, pad_idx):
        super(TextClassifier, self).__init__()
        
        # Embedding layer
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
        
        # GRU layers
        self.rnn = nn.GRU(embedding_dim, 
                          hidden_dim, 
                          num_layers=n_layers, 
                          bidirectional=True, 
                          dropout=dropout, 
                          batch_first=True)
        
        # Fully connected layer
        self.fc = nn.Linear(hidden_dim * 2, output_dim)  # Multiply by 2 for bidirection
        
        # Dropout layer
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, text, text_lengths):
        embedded = self.dropout(self.embedding(text))
    
        # Pack sequence
        packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, batch_first=True, enforce_sorted=False)
        packed_output, _ = self.rnn(packed_embedded)
    
        # Unpack sequence
        output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True)
    
        # Pass the entire output tensor to the FC layer for token-level classification
        return self.fc(output)

class LSTMTextClassifier(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers,
                 dropout, pad_idx):
        super(LSTMTextClassifier, self).__init__()
        
        # Embedding layer
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
        
        # LSTM layers
        self.rnn = nn.LSTM(embedding_dim, 
                          hidden_dim, 
                          num_layers=n_layers, 
                          bidirectional=True, 
                          dropout=dropout, 
                          batch_first=True)
        
        # Fully connected layer
        self.fc = nn.Linear(hidden_dim * 2, output_dim)  # Multiply by 2 for bidirection
        
        # Dropout layer
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, text, text_lengths):
        embedded = self.dropout(self.embedding(text))
    
        # Pack sequence
        packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, batch_first=True, enforce_sorted=False)
        
        # Note: LSTM returns both the output and a tuple of (hidden state, cell state)
        packed_output, (hidden, cell) = self.rnn(packed_embedded)
    
        # Unpack sequence
        output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True)
    
        # Pass the entire output tensor to the FC layer for token-level classification
        return self.fc(output)

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=120):
        super(PositionalEncoding, self).__init__()
        self.d_model = d_model

    def forward(self, x):
        # If pe doesn't exist or its sequence length is different from x's sequence length
        if not hasattr(self, 'pe') or self.pe.size(0) != x.size(1):
            max_len = x.size(1)
            pe = torch.zeros(max_len, self.d_model)
            position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
            div_term = torch.exp(torch.arange(0, self.d_model, 2).float() * (-math.log(10000.0) / self.d_model))
            pe[:, 0::2] = torch.sin(position * div_term)
            pe[:, 1::2] = torch.cos(position * div_term)
            pe = pe.unsqueeze(0)
            self.register_buffer('pe', pe.to(x.device))

        return x + self.pe[:, :x.size(1), :]

import torch.nn as nn
import torch.nn.init as init

def weights_init_kaiming(m):
    if isinstance(m, nn.Linear):
        init.kaiming_uniform_(m.weight, nonlinearity='relu')
        if m.bias is not None:
            init.zeros_(m.bias)
    elif isinstance(m, nn.Embedding):
        init.kaiming_uniform_(m.weight, nonlinearity='relu')

class TransformerClassifier(nn.Module):
    def __init__(self, vocab_size, embedding_dim, nhead, num_encoder_layers,
                 num_classes, dropout, pad_idx):
        super(TransformerClassifier, self).__init__()
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        

        
        # Embedding layer
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
        
        # Positional encoding
        self.pos_encoder = PositionalEncoding(embedding_dim)
        
        # Transformer with dropout
        transformer_encoder = nn.TransformerEncoderLayer(d_model=embedding_dim, nhead=nhead, dropout=dropout, activation="gelu")
        self.transformer = nn.TransformerEncoder(transformer_encoder, num_layers=num_encoder_layers)
        
        # Classifier with dropout
        self.classifier = nn.Sequential(
            nn.Dropout(dropout),
            nn.Linear(embedding_dim, num_classes)
        )
    
    def create_attention_mask(self, src, pad_idx):
        return (src == pad_idx)
        
    def forward(self, src, pad_idx):
        
        # Check pad_idx
        if isinstance(pad_idx, torch.Tensor) and torch.numel(pad_idx) > 1:
            raise ValueError("Expected pad_idx to be a scalar value, but got a tensor with multiple elements.")
    
        # Transpose src to have shape (seq_len, batch_size)
        src = src.transpose(0, 1)
    
        # Embedding
        x = self.embedding(src)
    
        # Positional Encoding
        x = self.pos_encoder(x.to(self.device))
    
        # Create attention mask
        src_key_padding_mask = self.create_attention_mask(src.transpose(0, 1), pad_idx)  # Transpose back to (batch_size, sequence_length)
    
        # Transformer
        x = self.transformer(x, src_key_padding_mask=src_key_padding_mask)
    
        #print(model.state_dict())
        # Classification
        return self.classifier(x)